
Flow-Based Intrusion Detection
Anna Sperotto



Graduation committee:

Chairman: Prof. dr. ir. Anton J. Mouthaan
Promoter: Prof. dr. ir. Boudewijn R. Haverkort
Assistant promoter: Dr. ir. Aiko Pras

Members:
Prof. dr. Pieter H. Hartel University of Twente
Prof. dr. Sandro Etalle University of Twente
Prof. dr. Michel R.H. Mandjes University of Amsterdam
Prof. dr. Gabi Dreo Rodosek University of the Federal Armed Forces,

Munich
Prof. dr. Jürgen Schönwälder Jacobs University Bremen
Dr. Philippe Owezarski Centre National de la Recherche Scientifique,

Toulouse

CTIT Ph.D.-thesis Series No. 10-180
Centre for Telematics and Information Technology
University of Twente
P.O. Box 217, NL – 7500 AE Enschede

ISSN 1381-3617
ISBN 978-90-365-3089-7

Publisher: Wöhrmann Print Service
Cover design: Gabriella Sperotto

Copyright c© Anna Sperotto 2010



FLOW-BASED INTRUSION DETECTION

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
Prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties,
in het openbaar te verdedigen

op donderdag 14 oktober 2010 om 15.00 uur

door

Anna Sperotto

geboren op 3 november 1982
te Belluno, Italië



Dit proefschrift is goedgekeurd door:
Prof. dr. ir. Boudewijn R. Haverkort (promotor)
Dr. ir. Aiko Pras (assistent-promotor)



Abstract

The spread of 1-10Gbps technology has in recent years paved the way to a
flourishing landscape of new, high-bandwidth Internet services. As users, we
depend on the Internet in our daily life for simple tasks such as checking e-
mails, but also for managing private and financial information. However, en-
trusting such information to the Internet also means that the network has be-
come an alluring place for hackers. To this threat, the research community
has answered with an increased interest in intrusion detection. With the num-
ber of attacks almost exponentially increasing, and the attackers’ motivations
moving from ideological to economical, the researchers’ attention is focused
on developing new techniques to timely detect intruders and prevent damage.
Our studies in the field of intrusion detection, however, made us realize that
additional research is needed, in particular: the creation of shared data sets to
validate Intrusion Detection Systems (IDSs) and the development of automatic
procedures to tune the parameters of IDSs.

The contribution of this thesis is that it develops a structured approach to
intrusion detection that focuses on (i) shared ground-truth data sets and (ii) au-
tomatic parameter tuning. We develop our approach by focusing on network
flows. Flows offer an aggregated view of network traffic, by reporting on the
amount of packets and bytes exchanged over the network. Therefore, flows
drastically reduce the amount of data to be analyzed. In this thesis, we aim at
detecting anomalies in flow-based time series, describing how the number of
flows, packets and bytes changes over time.

Ground truth data sets are fundamental in the development phase, for val-
idation purposes and, if publicly available, for comparison between different
IDSs. We attack the problem of ground truth generation in two complementary
manners.

First, we obtain ground truth information for flow-based intrusion detec-
tion by manually creating it. We do so by means of a honeypot-based data col-
lection and monitoring setup, specifically tuned to (i) offer an attracting plat-
form for attackers, and (ii) include enhanced logging capabilities to support the



vi

labeling of the collected data. The outcome of our research has been a publicly
released flow-based labeled data set. To the best of our knowledge, no such
data set already exists.

Second, we generate ground truth information in an automatic manner. We
do this by generating artificial flow, packet and byte time series for benign and
attack traffic. In this thesis, we rely upon Hidden Markov Models (HMMs),
which allow for probabilistic and compact representations of flow-based time
series and can be used for generation purposes.

Finally, we approach the problem of automatic tuning of IDSs. The perfor-
mance of an IDS is governed by the trade-off between detecting all anomalies
(at the expense of raising alarms too often), and missing anomalies (but not is-
suing many false alarms). We developed an optimization procedure that aims
to mathematically treat such trade-off in a systematic manner, by automatically
tuning the system parameters.



Contents

1 Introduction 1
1.1 Intrusion Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Open issues in Intrusion Detection . . . . . . . . . . . . . . . . . 7
1.3 Goal, research questions and approach . . . . . . . . . . . . . . . 8
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 13
2.1 Network flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Attack classification . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Detection classification . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 State of the art in flow-based intrusion detection 25
3.1 Denial of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Worms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Botnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Solutions classification . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 IDS trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Detecting attacks using flow data 39
4.1 Analysis approach . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 SSH traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 DNS traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 54



viii CONTENTS

5 Manual ground truth generation 57
5.1 Motivation and objectives . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Infrastructure for data collection . . . . . . . . . . . . . . . . . . 62
5.3 Data processing and labeling . . . . . . . . . . . . . . . . . . . . 67
5.4 The labeled data set . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Lesson learned and conclusions . . . . . . . . . . . . . . . . . . . 77

6 Automatic ground truth generation 79
6.1 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Flow-based characterization of SSH traffic . . . . . . . . . . . . . 80
6.3 The traffic models . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5 Discussion on the proposed models . . . . . . . . . . . . . . . . 100
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Tuning intrusion detection systems 105
7.1 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Detection system principles . . . . . . . . . . . . . . . . . . . . . 107
7.3 SSH case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.4 Attacks, observations and detection . . . . . . . . . . . . . . . . 112
7.5 The optimization procedure . . . . . . . . . . . . . . . . . . . . . 116
7.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.7 First approach towards adaptability . . . . . . . . . . . . . . . . 131
7.8 Is a binary classifier enough? . . . . . . . . . . . . . . . . . . . . 138
7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8 Conclusions 143
8.1 Overall conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.2 Future research direction . . . . . . . . . . . . . . . . . . . . . . . 147

A Hidden Markov Models 149
A.1 Formal description . . . . . . . . . . . . . . . . . . . . . . . . . . 150
A.2 The three basic problems for HMMs . . . . . . . . . . . . . . . . 152

B Addendum on optimization procedure validation 155
B.1 Gaussian fits and window size . . . . . . . . . . . . . . . . . . . 155
B.2 Optimization errors . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C Can we improve the performance of the detection system? 161



CONTENTS ix

Bibliography 163

Acronyms 175

Index 177

About the author 179



x CONTENTS



CHAPTER 1

Introduction

As users, we are day by day increasingly dependent on the Internet. In Fig-
ure 1.1, we show the world average number of Internet users per 100 inhabi-
tants in 2009, as reported by the International Telecommunication Union (ITU)
[73]. Among the developed countries, Internet usage is pervasive. For exam-
ple, the Netherlands has on average more than 89 Internet users per 100 inhab-
itants. If we consider that 90% of the Dutch population is between 5 and 80
years old1, we may say that virtually everybody in a suitable age is nowadays
using the Internet. Internauts all over the world are connected at work and at
home, and e-mails have almost completely substituted envelopes and stamps.
We browse the latest news on our phone and we smile when our favorite café
offers free WiFi. Moreover, and for some a bit worryingly, the Internet is the
virtual space in which we are nowadays used to manage our money and our
personal data. We depend on the Internet not only at the personal level. Inter-
net is by now such a ubiquitous technology that almost any company, univer-
sity, governmental organization or, even, critical infrastructure such as power
plants or water treatment plants, are globally connected.

At the basis of the situation that we have described, there is certainly the
technological push at infrastructure level which we witnessed in the last decade.
Nowadays an access speed of 1-10 Gbps is not unusual. There are huge in-
vestments being made in the creation of optical fiber infrastructures, such as,
for example, Fiber-to-the-Home [49]. Where fiber was in the past a privilege
reserved only to large Internet service providers and research institutes, now
we have Gbps connectivity to our own neighborhood. Since bandwidth for
wired connections is definitely not a problem anymore, more and more high-
bandwidth services are being offered to the users.

We should realize, however, that, behind the scenes, this technological im-

1Source: Centraal Bureau voor de Statistiek, 2010



2 1 Introduction

< 1.74

< 8.65

< 27.72

< 44.55

< 76.64

< 95.84

Figure 1.1: Percentage of Internet users in 2009 (source: ITU ICT Eye).

provement has paved the way to new challenges. First, the amount of Internet
traffic, as well as the line speed, continues to grow. A university network, for
example, reaches traffic averages in the order of hundreds of Mbps, with high
activity peaks in the order of Gbps. On backbone networks, as for example
Internet2 [74], the USA research and education backbone, the throughput is
even higher, as we show in Figure 1.2. Internet2 shows an almost exponential
growth over the period 2002-2010, with occasional peaks up to 50 Gbps. Such
amounts of data need to be managed and monitored, and new strategies to
cope with an average load of multiple Gbps have to be developed.

Second, the number of attacks does also continue to grow. The reason be-
hind this is in itself very simple: attacks are getting economically more and
more profitable. Let us take SPAM as an example. We all receive unsolicited
mail, ranging from more or less obvious commercials to phishing messages
specifically designed to resemble legitimate mails. SPAM represents a form of
pervasive advertisement, but it is, increasingly often, also a means to gather
personal information (by mimicking a message from your bank, for exam-
ple). Experts estimate that 90% of the worldwide sent mail messages are SPAM



3

 0

 10

 20

 30

 40

 50

 60

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Th
ro

ug
hp

ut
 (G

bp
s)

year

Weakly Throughput
Avg. Yearly Throughput

Figure 1.2: Network throughput (Gbps) for the network Abilene [74].

[144, 134, 150], and the phenomenon does not seem to decrease.
The combination of growing network load and attack frequency is challeng-

ing if we are aiming to effectively detect intruders. The network monitoring
community reacted to the ever growing amount of data by focusing on net-
work flows, rather than individual network packets [19, 121, 22]. A flow is de-
fined as a set of packets that have common properties, as, for example, having
the same source and the same destination (see Section 2.1.1). Measuring flows
offers an aggregated view of traffic information and drastically reduces the
amount of data to be analyzed. Flows are therefore a possible solution to cope
with scalability issues in IP monitoring. However, from a security perspec-
tive, we do not yet see a definite answer to the problem of intrusion detection
in situations, as high-speed networks, in which the traditional packet-based
solutions may no longer be feasible. Flows therefore appear as a promising
approach that may lead to improved results in the field of intrusion detection
in high-speed networks.

In the following, we first introduce the topics of intrusion detection and
flow-based intrusion detection (Section 1.1), and then point out what we con-
sider the main open issues in the field (Section 1.2). The analysis of such open



4 1 Introduction

issues leads us to present the goal and the research questions addressed in this
thesis (Section 1.3). Finally, we present the outline of this thesis (Section 1.4).

1.1 Intrusion Detection

According to Krügel et al. [81], “intrusion detection is the process of identifying
and responding to malicious activities targeted at computing and network re-
sources”. An intrusion attempt, also named attack, refers to a sequence of actions
by means of which an intruder attempts to gain control of a system. Citing
Halme et al. [66], the aim of an Intrusion Detection System (IDS) is therefore to
discriminate intrusion attempts and intrusion preparation from normal system usage.

Since research on intrusion detection started in the 1980s, many flavors of
IDSs have been proposed (see Chapter 2). Traditional IDS taxonomies, such as
Debar et al. [32, 33] and Axelsson [5], classify IDS according to several charac-
teristics, e.g., the data the IDS analyzes (log, application or network data), the
type of analysis (real-time or offline) or the type of data processing (centralized
or distributed). However, the most widely known classification feature regards
how an IDS identifies intrusions, i.e., misuse-based or anomaly-based IDS.

A misuse-based IDS, also known as signature-based or knowledge-based
IDS, performs detection by comparing new data with a knowledge base of
known attacks. An alarm is generated if a previously specified pattern is rec-
ognized. A famous example of this technique is the use of pattern matching
algorithms in packet payload analysis (e.g., Snort rules [123]). The strength of
a misuse-based IDS lies in being highly accurate, i.e., it rarely raises an alarm
due to a benign activity. On the other hand, its effectiveness depends on the
completeness of the signatures. Therefore, a misuse-based system cannot rec-
ognize new attacks.

An anomaly-based IDS, also known as behavior-based IDS, compares in-
put data with a model of normality, which describes the expected behavior of
the system. A significant deviation from the model is marked as an anomaly.
Examples of suitable techniques for the creation of a behavioral model are neu-
ral networks, statistical analysis techniques and Markov models, as surveyed
in the works of Patcha et al. [115] and Estevez-Tapiador et al. [45]. The main
advantage of an anomaly-based IDS is that it can potentially detect also attacks
that have never been seen before [114]. Note however that, while an attack is
often an anomaly, there exist cases in which events that deviate from the model
of normality are not necessarily malicious. The classical example is a so-called
flash crowd, i.e., a surge of traffic towards a web-server, caused by the public



1.1 Intrusion Detection 5

release of some content, for example a new Linux release [8]. While dealing
with the overwhelming amount of traffic, the web-server is likely to become
unresponsive. A flash crowd is usually not malicious, but it can be mistaken
for a Denial of Service (DoS) attack.

An IDS aims to discriminate between intrusion attempts and normal activ-
ities. In doing so, however, an IDS can introduce classification mistakes. A
false positive is a benign input for which the system erroneously raises an alert.
A false negative, on the other hand, is a malicious input that the IDS fails to
report. The correctly classified input data are usually referred to as true pos-
itives (attacks) and true negatives (normal traffic). There is a natural trade-off
between detecting all malicious events (at the expense of raising alarms too of-
ten, i.e., having high false positives), and missing anomalies (i.e., having high
false negatives, but not issuing many false alarms). We graphically show this
trade-off in Figure 1.3. It is usually the case that we can control the system
performance by tuning specific IDS parameters, as schematically suggested in
Figure 1.3 by the dashed line: the region to the left of the line results in low
false positive rate, but an increasing false negative rate; similarly, the region to
the right favors a low false negative rate, but it has a higher false positive rate.
Which component of the trade-off is more important is a case-specific decision,
and ideally, we would want to optimize both components. We might want to
identify all malicious attempts, because this would make our network safer.
However, this would be of no use if the number of alerts would overload the
IT specialist responsible for handling them.

false positive
rate

false negative
rate

IDS parameters

Figure 1.3: Trade-off between false positive and false negative rates.



6 1 Introduction

1.1.1 Flow-based Intrusion Detection

An IDS would need to be able to handle the growing number of attacks, the rise
in the amount of traffic as well as the increase in line speed [137]. However, re-
searchers assess the payload-based IDSs processing capability to lie between
100 Mbps and 200 Mbps when commodity hardware is used [82, 55], and close
to 1 Gbps when dedicated hardware is employed [31, 151]. Well-known sys-
tems like Snort [123] and Bro [116] exhibit high resource consumption when
confronted with the overwhelming amount of data found in today high-speed
networks [36]. In addition, the spread of encrypted protocols poses a new chal-
lenge to payload-based systems. An example is described in the work of Taleb
et al. [46, 145], where the authors propose an IDS based on per-packet inspec-
tion that relies only on header information in order to identify misuses in en-
crypted protocols.

Given these problems, flow-based approaches seem to be promising can-
didates for intrusion detection research. Flows are monitored by specialized
accounting modules usually placed in network routers. These modules are
responsible for exporting reports of flow activity to external collectors (see Sec-
tion 2.1). Flow-based IDSs will analyze these flows to detect attacks. Com-
pared to traditional IDSs, flow-based IDSs have to handle a considerably lower
amount of data. For example, in the case of the University of Twente (UT)
network, we calculated that the ratio between packets exported by NetFlow
(containing the flow records) and the packets on the network is on average
equal to 0.1%. Moreover, considering the network load measured in bytes, the
overhead due to Netflow is on average 0.2%. Flow-based intrusion detection
is therefore a logical choice for high-speed networks.

The question remains whether flows do carry enough information, com-
pared to payload inspection, to be useful for intrusion detection. Flow mea-
surements are by nature aggregated information. They, therefore, do not pro-
vide the detection precision of payload-based inspection. However, informa-
tion on the safety status of a monitored network can be obtained from flows,
for example by studying evolutions of network interactions. Flow measure-
ments provide an aggregated view of the data transferred over the network
and between hosts, in terms of number of packets, bytes and measured flows
themselves. In this context time series are a powerful tool to describe network
evolution patterns. In network monitoring, time series are usually accepted as
the natural way to look at network traffic, i.e., in a streaming manner. The pop-
ularity of this approach is reflected by the widespread use of tools like, among
others, Multi Router Traffic Grapher (MRTG) [111] and, lately, the Netflow Sen-



1.2 Open issues in Intrusion Detection 7

sor (NfSen) suite [64]. NfSen, in particular, has been specifically developed to
collect and visualize flow data. In this thesis, we combine time series analysis
with flow-based intrusion detection. We aim to investigate how it is possible to
describe anomalous events, by mathematically considering the evolution over
time of flows, packets and bytes.

In any case, it is important to underline that flow-based intrusion detection
is not supposed to substitute the packet-based one, but rather complements the
approach by allowing early detection in environments in which payload-based
inspection is not scalable.

1.2 Open issues in Intrusion Detection

Flow-based intrusion detection is a relatively new research field, the first con-
tributions of which, as we will see in Chapter 3, date back to the first decade of
this century. Flow-based intrusion detection builds upon previous experience
in intrusion detection, but faces different challenges, for example the absence
of payload. Like payload-based intrusion detection, however, it has a distinct
problem-oriented attitude: with the number of attacks almost exponentially in-
creasing [137], and the attackers’ motivations moving from ideological to eco-
nomical, the researchers’ attention is focused on developing new techniques
to timely detect intruders and prevent damage. Our studies in the field of
flow-based intrusion detection, however, made us realize that other research
directions are possible, especially if we consider that flow-based intrusion de-
tection is a discipline placed at the intersection between network monitoring
and security. Here we point out two problems that, in our opinion, need urgent
attention.

First, in the network monitoring community, the importance of sharing net-
work traces for development, validation and comparison purposes is well un-
derstood. Examples are repositories like Caida DATA [147], DatCat [30], Craw-
dad [25], Simpleweb [132] and the MOME project [103]. In intrusion detection,
data sets also play a central role, with the difference being that researchers usu-
ally evaluate new approaches by testing them on data sets for which the mali-
cious or benign nature of the data is known. We refer to these traces as ground-
truth data sets. Considering the current situation, research on IDS generally
suffers from a lack of shared ground-truth data sets. High-quality ground-
truth data sets are time consuming to create and often rely on privacy-sensitive
data. Therefore, most publications use non-public traffic traces for evaluation
purposes, and we have no knowledge of any publicly available ground-truth



8 1 Introduction

flow-based data set. This is generally an obstacle to the comparison of different
IDS approaches.

Second, we may certainly say that each new approach to intrusion detec-
tion brings us a step forward towards having a safer network. However, we
often forget that, for an intrusion detection system to be deployed, we keep
“the man in the loop”. With this, we mean that, once a new approach has been
developed, it is generally assumed that expert IT personnel will take care of
the operational aspects in a specific network. This assumption is motivated by
the fact that any IDS, to be effective, needs to be tuned according to the specific
characteristics of the monitored network. However, this also means that only
the expertise of the security operator ensures us that an IDS is tuned to be used
in the best way possible. We wonder therefore whether the problem of param-
eter tuning for IDS could not be treated in a more systematic manner, leaving
the security expert free to focus on high-level policies (such as maximum al-
lowed false positive rate, or relative importance assigned to false positive and
false negative rates) instead of understanding how the IDS works. This rea-
soning relates to the wider concept of autonomic management. Citing Horn [69],
who proposed in 2001 the idea of the Autonomic Computing Initiative (ACI),
an autonomic system allows “users to concentrate on what they want to ac-
complish rather than figuring how to rig the computing systems to get them
there.” Applied to an IDS, this means that we want to achieve the desired (op-
timal) performance without knowing the details of the underlying system. The
task of the security expert would therefore be to specify security policies, and
the system should implement these policies to provide optimal detection.

1.3 Goal, research questions and approach

In light of the reasoning so far, the goal of this thesis is to develop a structured
approach to intrusion detection that focuses on (i) shared ground-truth data
sets and (ii) automatic parameter tuning. We develop our approach in the con-
text of detecting anomalies using flow data and time series. To achieve this
goal, we will answer the following research questions:

Research Question 1: What is the state of the art in the field of flow-based
intrusion detection?

Research Question 2: Are time series a good approach for intrusion detection
at flow level? If yes, how can they be exploited best?



1.3 Goal, research questions and approach 9

Research Question 3: How can we determine ground-truth information for
flow-based intrusion detection?

Research Question 4: How can we tune the parameters of a flow-based IDS
based on high-level policies?

Flow-based intrusion detection is a relatively new research field that has
only recently attracted the researchers’ attention. The objective of Research
Question 1 is therefore to identify the main contributions and research trends
in flow-based intrusion detection so far. In order to do this, we perform a
literature study that presents a structured overview of the research field.

The starting point for the research in this thesis are real network measure-
ments. Therefore, Research Question 2 aims at gaining domain knowledge
about how anomalies look like “in the wild”, in cases where only flow data are
available. To answer this question, we perform extensive data analysis on flow
data from the University of Twente and SURFnet, the Dutch national research
and education network. We focus, in particular, on how anomalies affect met-
rics as the number of flows, packets and bytes, in the form of time series. As a
result, we acquire an in-depth understanding of which of the aforementioned
metrics is suitable for intrusion detection.

The goal of Research Question 3 is to shed light on a basic problem that
all IDSs as well as other classification systems have in common: the need for
labeled data, or ground truth. We are not able to evaluate a system if we do
not know the nature of the data it has processed. Ground-truth data sets are
fundamental in the development phase, for validation purposes and, if pub-
licly available, for comparison between different IDSs. We identify two viable
solutions to answer Research Question 3. First, we obtain ground-truth infor-
mation for flow-based intrusion detection by manually creating it. In order to
do so, after identifying the requirements a ground-truth data set should meet,
we inspect possible network infrastructures suitable for the task. Following the
outcome of this phase, we proceed by creating a flow-based labeled data set by
tracking malicious activities on a monitoring point that has been optimized for
collecting security information. Finally, we release the flow-based data set in
anonymized form for public use.

A second approach to answer Research Question 3 is to create ground truth
in an automatic manner. To answer this part of Research Question 3, we model
malicious and benign flow information at time series level. We rely upon the
well-known framework offered by HMMs [122], since they allow a probabilis-
tic, compact representation of (flow-based) time series and they can be used for



10 1 Introduction

generation purposes. We validate our approach by verifying that the generated
time series statistically approximate the original ones.

Finally, Research Question 4 deals with the topic of tuning the parameters
of an IDS according to high-level policies. The general expectation for an IDS
is to have a high true positive rate while maintaining a low false positive rate.
However, the tuning of the system parameters is typically left to the experience
and the skill of IT personnel and little work has been done in proposing struc-
tured approaches to address this problem. To answer Research Question 4, we
propose an optimization procedure for tuning the parameters of a flow-based,
time-series based intrusion detection system. We approach the parameter tun-
ing by solving a non-linear optimization problem that addresses the trade-off
between true positive and false positive in a probabilistic manner. Moreover,
we explicitly take into account the fact that the optimal solution may depend
on the situation, meaning that it can change according to specific network and
user requirements. Finally, we support our approach by extensively validating
it on synthetic and original data sets.

1.4 Thesis outline

Introduction
Network

Anomalies
Automatic Detection Conclusions

Ground Truth

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7 Ch. 8

� �� �
RQ 1

� �� �
RQ 2

� �� �
RQ 3

� �� �
RQ 4

Figure 1.4: Thesis structure.

The thesis structure closely follows the Research Questions. Figure 1.4
presents a sketch of the thesis outline, where the chapters have been grouped
according to their topic and the research question they will answer. The re-
mainder of this thesis is therefore organized as follows:

• Chapter 2 (“Background”) provides the background information needed
for the research presented in this thesis. The chapter covers three top-
ics: flows and their creation and collection process; attacks and intrusion
detection, in the form of basic taxonomies.



1.4 Thesis outline 11

• Chapter 3 (“State of the art in flow-based intrusion detection”) presents a
structured overview of the main contributions so far in the field of flow-
based intrusion detection. Moreover, the added value of Chapter 3 lies
in the classification of the current solutions according to the intrusion
detection taxonomy in Chapter 2. This analysis allows us to point out the
main trends in the intrusion detection field. Chapter 3 therefore answers
Research Question 1.

• Chapter 4 (“Detecting attacks using flow data”) presents an extensive
data analysis on flow-based traffic time series. The analysis is conducted
by performing a protocol breakdown of the total traffic. This operation
makes it easier to detect the presence of anomalies. Moreover, the chapter
analyzes which numerical flow information, in terms of flow, packet and
byte time series, is needed for intrusion detection purposes. Chapter 4
answers Research Question 2.

• Chapter 5 (“Manual ground truth generation”) explores the possibility
to generate ground truth for flow-based intrusion detection in a manual
manner. First, Chapter 5 investigates which requirements should be put
upon a flow-based labeled data set. Second, it studies which network in-
frastructures are suitable for collecting meaningful data for the data set
creation. Finally, the chapter describes how to add ground-truth infor-
mation to the collected data. Chapter 5, together with Chapter 6, answers
Research Question 3.

• Chapter 6 (“Automatic ground truth generation”) investigates how to
create ground truth in an automatic manner. The chapter presents mod-
els for malicious and benign Secure Shell Protocol (SSH) traffic time series
as a case-study. The description of the models is followed by a validation
step, where we verify that the generated labeled time series respects the
main statistical characteristics of the original traffic. Chapter 6 completes
the research needed to answer Research Question 3.

• Chapter 7 (“Tuning intrusion detection systems ”) focuses on automatic
parameter tuning. The chapter investigates, by means of an example in
the form of a simple anomaly-based, probabilistic IDS, how we can tune
the IDS parameters. The tuning procedure aims to approach the trade-off
between true positive rate and false positive rate as an optimization prob-
lem. Finally, Chapter 7 presents an extensive validation of the proposed
optimization procedure by means of synthetic and real labeled time se-
ries. Chapter 7 answers Research Question 4.



12 1 Introduction

• Finally, in Chapter 8 (“Conclusions”) we close this thesis by drawing our
conclusions and identifying directions for future work.



CHAPTER 2

Background

In Chapter 1 of this thesis, we outlined the trends in Internet development and
we motivated the need of having fast and scalable intrusion detection. In this
chapter, we provide background information on the topics that play a central
role in this thesis: flows, attacks and intrusion detection. In this thesis, we base
our research on network flows. Section 2.1 therefore gives the definition of
flows and describes the flow creation and collection process. The section also
presents an overview of the flow export protocols and of the sampling methods
applied to create flows. Since it is also important to be aware of which attacks
are threatening our networks, we introduce, in Section 2.2, a basic taxonomy of
network attacks. Similarly, in Section 2.3, we provide a taxonomy of intrusion
detection systems.

2.1 Network flows

In the last decade, flows have become quite popular in IP network monitoring,
since they help to cope with the scalability issues introduced by the increasing
network speeds. Nowadays all major vendors offer flow-enabled devices, such
as, for example, Cisco routers with Netflow [19]. The Internet Engineering Task
Force (IETF) is currently working on an IP flow standard, IP Flow Information
eXport (IPFIX).

2.1.1 Flow definition

In the literature, several flow definitions can be found [19, 52, 51, 21]. We
present the definition of IP flow as it is described by the IPFIX working group
within the IETF [121, 22]:



14 2 Background

“A flow is defined as a set of IP packets passing an observation
point in the network during a certain time interval. All packets
belonging to a particular flow have a set of common properties.”

In the IPFIX terminology, the common properties are called flow keys. An example
of flow keys commonly used for characterizing a flow is:

(Source IP ,Destination IP ,Source port ,Destination port , IP protocol).

Aggregated views on the network traffic can be obtained by choosing coarser
grained flow definitions, according to the need of the network administrator.
An overview of this process is given by Fioreze et al. [52, 51]. It is analogously
possible to have more detailed flow definitions. For example, additional fields
can be introduced as extensions for diverse applications. These additional
fields are described in IPFIX and they have been recently included in Flexible
Netflow [18].

Note: There are important differences between flows and Transmis-
sion Control Protocol (TCP) connections. A TCP connection deter-
mines a pair of flows: one from the initiator of the connection to
the destination, and one from the destination to the initiator. How-
ever, a flow should not necessarily be due to the TCP protocol. For
example, a stream of User Datagram Protocol (UDP) packets be-
tween a source host A and a destination host B will result in a flow.
Moreover, a flow does not have size restrictions: each communi-
cation between source and destination hosts will generate a flow,
even if a single packet has been exchanged. Traditionally, flows
are also unidirectional, whereas TCP connections are by definition
bidirectional. However, IETF has recently introduced a definition
of bidirectional flows [148], since bidirectional data can further im-
prove export and collection efficiency.

2.1.2 The metering and collection process

Monitoring flows entails a two-step process: flow exporting and flow collection.
These tasks are respectively performed by two components: the exporter and
the collector. Figure 2.1 presents an overview of the metering and collection
process.

The flow exporter, or monitoring point, is usually a router or a different flow-
enabled device. It is responsible for the metering process, i.e., the creation of



2.1 Network flows 15

FLOW 
COLLECTOR

MONITORING

ANALYSIS

STORING

FLOW EXPORTER

METERING

PACKET CAPTURE TIMESTAMPING SAMPLING
FILTERING UPDATING

Figure 2.1: IP Flow exporting and collecting architecture [22, 19].

flow records from observed traffic. The flow exporter extracts the packet header
from each packet passing through the monitoring interface. Each packet header
is marked with the timestamp when the header was captured. The header is
then processed by a sampling-filtering module, where it can be sampled (see Sec-
tion 2.1.4) and filtered according to specific administrative requirements (e.g., a
specific protocol or IP range). The final step is the update module. Each incom-
ing packet header triggers an update to a flow entry in the flow cache. If there is
no flow matching the packet header, a new flow entry is created.

A flow record is exported to the flow collector when it is considered expired.
In the case of Cisco NetFlow [19] and similarly in IPFIX [121, 22], a flow expires
when:

• the flow was idle (no packets belonging to the flows have been observed)
for a time interval longer than a given threshold. This threshold is known
as inactive timeout. The default value for the inactive timeout for Cisco
Netflow [19] is 15 seconds. However, it can be tuned according to the
operators’ requirements. At the University of Twente and for SURFnet,
for example, the inactive timeout is set to 30 seconds. Géant [59] uses an
inactive timeout of 60 seconds;

• the flow reaches a maximum allowed lifetime, known as active timeout.
For Cisco Netflow [19], the active timeout is 30 minutes, but our experi-
ence showed that shorter timeouts are also common. At the University
of Twente, for example, the active timeout is set to one minute. SURFnet
[143] and Géant [59] both use an active timeout of 5 minutes;

• the FIN or RST flags have been seen in a TCP flow, indicating the end of



16 2 Background

a TCP connection;

• the flow-cache memory is exhausted. In this case, a subset of the flows
in the cache is marked as expired and exported to the collector. Least
Recently Used algorithms may be used to free the flow-cache memory, as
well as heuristic algorithms.

The aim of the flow collector is to receive the flow records from the flow ex-
porter and to store them in a form suitable for further monitoring or analysis.
Examples of flow collector and analysis tools are flow-tool [54], nfdump
[63], sFlowTrend [72], IsarFlow [75] and DiCAP [106, 107].

2.1.3 Flow export protocols

A flow export protocol defines how expired flows are transferred by the exporter
to the collector. The information exported to the collector is usually referred as
flow record.

Note: The terminology flow and flow record usually raises the ques-
tion about the actual difference between the two. A flow is the com-
plete unidirectional stream of packets between a source and desti-
nation in a network, while a flow record is the information stored in
the flow exporter cache. A flow can coincide with a flow record, if
the flow duration is shorter than the exporter active timeout. Flows
longer that the active timeout will be split into several flow records.
In other words, a flow record is the information describing (part of)
a flow as we obtain it directly from a flow exporter. In many con-
tributions (Chapter 3), and concerning this thesis, the difference is
often subtle and the terms are interchangeably used.

Cisco Netflow version 5 [19] is a simple protocol that exports flow records of
fixed size (48 bytes in total). Each export datagram will contain up to 30 flow
record. The fields of a Netflow Version 5 flow record are summarized in Ta-
ble 2.2.

Cisco Netflow version 9 and IPFIX [121, 22] propose flexible protocols in
which flow record formats can be defined by using templates. These proto-
cols allow also a larger set of parameters to be exported, such as, for example,
sampling rate and algorithm, source and destination VLAN identifiers, MAC
addresses and autonomous system numbers [21, 120]. An IPFIX packet is log-
ically divided into sections known as sets. A message can normally consist of



2.1 Network flows 17

Field Description
Source IP address
Destination IP address
Next hop router IP address
SNMP input and output interfaces indexes
Total number of packets in the flow
Total number of Layer 3 bytes in the flow packets
Start of flow timestamp
End of flow timestamp
Source and destination port number
Cumulative OR of TCP flags
IP protocol (for example, 6 = TCP, 17 = UDP)
IP Type of Service
Source and Destination Autonomous system
Source and destination address prefix mask bits

Table 2.2: Cisco NetFlow Flow Record Fields.

three kinds of sets, namely template sets (format template exchange), data sets
(flow records) and options template sets (necessary for the correct interpretation
of a template set). For a more detailed treatment of the IPFIX message for-
mat, we refer to [22]. In Netflow v9 terminology, template sets are referred as
template FlowSet and data sets as data records.

2.1.4 Sampling

The metering process requires state information to be kept for each active flow.
The IETF Packet Sampling (PSAMP) working group [119] is currently discuss-
ing the creation of a sampling standard. On high-speed links, with millions of
packets per second and hundreds of thousands of active flows, the metering
process can easily become a bottleneck. A heavy demand is indeed put on the
CPU and memory resources of the flow exporter, with a consequent degrada-
tion of the performance in terms of both high CPU load and packet loss.

To relieve the load, sampling methods can be deployed. Sampling can be
applied at different levels. Firstly, at packet level, meaning that each packet in-
dependently undergoes the sampling procedure. Secondly, at flow level, where,
if a flow is sampled, all packets belonging to it are accounted.

Sampling techniques are divided into systematic and random ones [76, 155,



18 2 Background

68]. In systematic packet sampling, for example, a packet is selected based on
a time interval (time-driven sampling) or a sequence of packet arrivals (event-
driven sampling). If randomness is introduced, we can have an n-in-N sampling
schema. The traffic is split into sequences of N packets. Out of each of these,
each time n are randomly selected. Examples of sampling rates for n-in-N sam-
pling are 1-in-100 and 1-in-1000, often used in Cisco Netflow-enabled routers.

When probabilistic sampling is used, on the other hand, each packet is sam-
pled with a certain probability. An example of probabilistic sampling at flow
level is Sample and hold, proposed by Estan et al. [44]. When the exporter de-
tects a new packet that does not belong to any already existent flow, it creates
a new flow with probability p. Duffield et al. [40, 41] and Alon et al. [2] ex-
tend this idea by making the probability of sampling a flow depending on its
size. The rationale behind this approach is that, since the distribution of bytes
per flow is heavy tailed [48], a random omission of large flow can introduce
a substantial error in the estimation of the original traffic volume. In a recent
contribution, Liu et al. [95] observe that a flow sampling procedure based on
the flow size poses computational limitations in high speed networks: all pack-
ets need to be seen before any decision on the sampling is taken. On the other
hand, packet sampling is more scalable, but it may introduce errors in the es-
timation of statistical properties of the traffic. Liu et al. suggest a two-stage
sampling procedure that combines both random packet sampling and random
flow sampling.

It is important to realize, however, that although sampling indeed reduces
the demands on the flow exporter, it makes decision making harder, since the
statistical properties of the traffic need to be estimated based on the sampled
measurements. Several studies discuss the impact of sampling on intrusion
detection and flow creation: examples are Brauckhoff et al. [15], Mai et al. [98]
and Zseby et al. [162].

2.2 Attack classification

The previous section gave an overview of how flows are created. To under-
stand how flows can be used for intrusion detection, we are now going to give
a brief overview of the attacks present in our networks.

Several attack classifications have been described in the literature [67, 71,
156], and outlined in the extensive attack taxonomy survey by Igure et al. [71].
We are aware, however, that, considering the nature of the topic, several new
threats constantly appear on our network. We outline here the basic attack



2.3 Detection classification 19

categories in Table 2.4, following the contributions of Hansman et al. [67] and
Weaver et al. [156]. The categories we present, however, should not be regarded
as mutual exclusive classes of attacks. For example, buffer overflows and in-
formation gathering attacks, as for example port scans, can be regarded as sep-
arate categories of attacks, but also as specific techniques used by worms or
as prelude to Denial of Service (DoS) attacks. Rather, these categories describe
general “concepts” of attacks that have been frequently observed in practice.
Moreover, not all taxonomies provide a classification like the one reported here.
For example, Howard [70] focuses on a process-driven taxonomy, based on the
objective of the attacker, the used tools, etc. Hansman et al. [67] summarize un-
der the category “Network attacks” various other attacks, such as, for example,
spoofing, session hijacking and parameter tampering.

Nowadays, an additional threat has evolved pertaining to Botnets. Bot-
nets are groups of computers “infected with malicious program(s) that cause
them to operate against the owners’ intentions and without their knowledge”,
as defined in Lee et al. [90]. Botnets are remotely controlled by one or more
bot-masters. Moreover, Botnets are the perfect infrastructure for setting up and
supporting any kind of distributed attack, such as, for example, Denial of Ser-
vice attacks and SPAM (unsolicited e-mail) campaigns. Infected hosts unknow-
ingly become part of Botnets, and take part in malicious activities [26, 142]. The
threats posed by Botnets are such that, even though they were not considered
in the classifications in [67, 156], we decided to include them in our analysis.

2.3 Detection classification

Since the first papers on intrusion detection appeared in the 1980s, several tax-
onomies of intrusion detection techniques have been proposed. Our study
identifies two main contributions to the field, the work of Debar et al. [32, 33]
and that of Axelsson [5].

Debar et al. [32, 33] were among the firsts to propose an IDS taxonomy.
Their classification focuses on the following elements:

• Detection Method: if a system bases the detection on a definition of nor-
mal behavior of the target system, it is called behavior-based. If it matches
the input data against a definition of an attack, it is known as knowledge-
based. In the literature, the community usually refers to these classes with
the names of anomaly-based and misuse-based solutions [109, 5, 34, 91, 57].



20 2 Background

A
ttack

D
escription

Exam
ple

Physical
attacks

D
am

age
to

the
com

puters
and

netw
ork

hardw
are.

M
aterialdam

age;
Electrom

agnetic
em

anations
B

uffer
overflow

s
A

ttacks
thatgain

controlor
crash

a
process

on
the

targetsystem
by

overflow
-

ing
a

buffer
ofthatprocess.

Stack
bufferover-

flow
s;

Tw
ilight

hack
Passw

ord
attacks

A
ttacks

trying
to

gain
passw

ords,keys,etc.,for
a

protected
system

.
John

the
R

ipper

D
oS

attacks
A

ttacks
w

hich
lead

to
situations

in
w

hich
legitim

ate
users

experience
a

di-
m

inished
levelofservice

or
cannotaccess

a
service

atall.
Ping

ofD
eath,

TC
P/U

D
P

floods
Inform

ation
gathering
attacks

A
ttacks

thatdo
notdirectly

dam
age

the
targetsystem

,butgain
inform

ation
about

the
system

,possibly
to

be
used

for
further

attacks
in

the
future.

This
category

com
prises

netw
ork

traffic
sniffing

and
scans.

SSH
dictionary

attack;
packet

sniffing
Trojan

horses
Program

s
disguised

as
a

usefulapplication,w
hich

deliberately
perform

un-
desirable

actions.
Beast;G

raybird

W
orm

s
Program

thatself-propagates
across

a
netw

ork.Self-propagation
is

the
char-

acteristic
thatdifferentiates

w
orm

s
from

viruses.
A

w
orm

spread
can

be
ex-

trem
ely

fast:an
exam

ple
is

the
Sapphire/Slam

m
er

w
orm

,w
hich

is
know

n
to

have
infected

90%
ofthe

vulnerable
hosts

in
10

m
inutes

[104].

C
ode

R
ed;

Sap-
phire/Slam

m
er;

C
onficker

V
iruses

A
virus

is
regarded

as
a

w
orm

thatonly
replicates

on
the

(infected)hostcom
-

puter.
H

ence,it
needs

user
interactions

to
propagate

to
other

hosts.
O

ften,
the

definition
also

requires
a

virus
to

attach
itself

to
files

on
the

host,
e.g.,

executable
files,

in
order

to
be

activated.
A

s
a

consequence,
the

speed
of

spreading
cannotbe

com
pared

w
ith

a
w

orm
spread.

C
IH

/C
hernobyl

V
irus;M

elissa

B
otnets

A
group

of
com

prom
ised

hosts,know
as

bots
or

zom
bies,that

are
rem

otely
controlled

by
a

com
m

and
and

control
center,the

bot-m
aster.

Botnets
are

a
suitable

platform
for

launching
attacks

like,am
ong

others,spam
cam

paigns,
D

oS
and

w
orm

s.

Storm
;C

onficker

Table
2.4:A

ttack
categories,follow

ing
[156,67],and

extended
w

ith
the

category
Botnets.



2.3 Detection classification 21

• Behavior on detection: a system can be proactive and act against the
intruder (active system) or can generate alerts that will be later processed
by a different system or a human operator (passive system).

• Audit source location: the data processed in order to detect intrusion
can be host or application logs, network traffic or alerts generated by other
detection systems. The original taxonomy by Debar et al. [32, 33] refers
only to network packets. However, we believe that this type of audit data
can be naturally extended to include other kind of network information,
such as packet headers or flows. We therefore refer to it as network traffic
data. Moreover, packet-based network IDSs can perform their analysis
per packet (stateless system) or based on previously collected information,
for example performing TCP session reconstruction (stateful system).

• Detection Paradigm: the IDS can detect the current status of the target
system (secure or insecure) or can alert on a state transition (from secure
to insecure).

• Usage frequency: the system can perform its task in real-time (continuous
monitoring) or post-mortem (periodic analysis).

Axelsson [5] builds his taxonomy upon the one proposed in Debar et al. [32, 33],
but extends and completes it. In particular, besides the previously described
characteristics, an IDS is described also according to the following categories:

• Locus of data-processing: an IDS can be centralized or distributed, irre-
spectively of the origin of the data.

• Locus of data-collection: the data collection can be centralized or dis-
tributed.

• Security: the IDS is or is not resilient to security threats of which it is the
target.

• Degree of inter-operability: a system can be built to work in conjunction
with other systems (exchanging data) or stand-alone.

In his work, later followed by Almgren et al. [1], Axelsson refines the defi-
nition of anomaly- and misuse-based system. An anomaly-based system can be
described as self-learning or programmed. A self-learning system is able to auto-
matically build a model of the normal behavior of the system to protect, usually



22 2 Background

Figure 2.2: Detection capabilities of different intrusion detection models [109].

through a period of training. Examples of self-learning systems are Hidden
Markov Models and Artificial Neural Networks. In the case of a programmed
system, on the other hand, the definition of normality has to be provided by
the system developer. A simple example is the case in which the system de-
veloper describes the conditions under which the observed system functions
safely, and provides rules to flag the deviations from these conditions (for ex-
ample providing thresholds over statistical values). A misuse-based system, on
the other hand, is always defined as programmed. The system is provided with
a knowledge-base of attacks, against which it matches the inputs, such as in
the case of attack string matching.

Figure 2.2 graphically displays the problem of intrusion detection in the
case of knowledge-based and behavior-based systems. A knowledge-based
model is supposed to describe only illegal activities. In some cases, however,
if the system is not accurate enough, legal activities can be flagged as intru-
sions; such events are called false positives. At the same time, if the model is not
complete, it will not be able to report all malicious activities; unflagged illegal
activities are known as false negatives. A behavior-based model, on the other
hand, is supposed to describe only legal activities (normality). Also in this case,
incompleteness and inaccuracy can lead to false positive and false negatives.

Finally, in [5], Axelsson introduces a third class of systems in which both
anomaly-based inspired characteristics and misuse-based ones coexist. In his
work, such systems are known as compounds.

2.4 Summary

This chapter gave background information, on the one hand, on the flow cre-
ation and collection process and, on the other hand, on attacks and detection



2.4 Summary 23

mechanisms.
In Section 2.1, we provided the definition of flow, according to the IPFIX

documentation [121, 22] and we sketched the main phases of the flow creation
process: the metering process, that perform the actual flow cache update, the
exporting process and the collection process. In the same section, we described
the principal flow export protocols and the sampling procedure introduced to
deal with the increase of the network speed and load.

Sections 2.2 and 2.3 introduced the attack and intrusion detection taxono-
mies, respectively. Classification of Internet attacks is a field in constant evo-
lution. On the contrary, classification of intrusion detection systems seems to
rely on few widely accepted contributions: Debar et al. [32, 33] and Axelsson
[5].

The following chapter will present the state-of-the-art solution in the field
of flow-based intrusion detection.



24 2 Background



CHAPTER 3

State of the art in flow-based intrusion
detection

According to the definition in Section 2.1.1, flow records provide an aggre-
gated view of network traffic. From an intrusion detection point of view, this
means that it is necessary to rely on information other than the packet payload
to identify malicious activities. In Chapter 2, we summarized the most impor-
tant classes of attacks that can be observed. However, flow-based intrusion
detection, since it cannot rely on packet content, can deal with only a subset of
these attacks. In particular, our survey of the state of the art shows that the re-
search community currently focuses on detecting Denial of Service attacks, Scans,
Worms and Botnets.

In Section 3.1 we present the main contributions in Denial of Service detec-
tion, whereas we discuss the state of the art in scan detection in Section 3.2.
Section 3.3 addresses the problem of worm detection, and finally Section 3.4 give
the state of the art on a recent and fast evolving threat, Botnets. In Section 3.5
we classify and analyze the state-of-the-art solutions according to the intrusion
detection taxonomy introduced in Chapter 2. In the end, Section 3.6 concludes
the chapter.

3.1 Denial of Service

As defined in Section 2.2, a Denial of Service (DoS) attack aims to bring le-
gitimate users to experience a diminished level of service or no service at all.
Denial of Service is a frequent attack on the Internet. An overview of how often
a system is the target of a DoS attacks is given in Moore et al. [105]. The authors
analyze multiple one-week traces covering over three years from 2001 to 2004,
and they conclude that on average each hour 24.5 different IP addresses all over



26 3 State of the art in flow-based intrusion detection

the world are the target of a DoS attack. The findings of Moore et al. clearly
show that DoS attack detection is, still in these days, a problem that requires
experts’ attention.

Note: Flow-based research is mostly addressing the problem of
brute force DoS attacks, i.e., a type of DoS that relies on resource
exhaustion or network overloading. Unfortunately, it is almost im-
possible to directly detect semantic DoS attacks, i.e., attacks in which
the service interruption is caused by the payload contents. For ex-
ample, let us consider the (nowadays out-of-date) Ping of Death
attack. In such attack, the attacker sends malformed or otherwise
malicious ping packets, which causes the victim system to crash.
Since, following the Cisco Netflow definition, this attack will be ac-
counted as a single Internet Control Message Protocol (ICMP) flow,
the attack would most likely be undetected.

The work of Gao et al. [56] approach the problem of Denial of Service de-
tection by means of aggregate flow measures accounted in appropriate data
structures, named sketches. A sketch is originally a one-dimensional hash ta-
ble suitable for fast storage of information [128]: it counts occurrences of an
event. Sketches permit to statistically characterize how the traffic varies over
time. An anomaly-based engine triggers alarms based on a statistical forecast
of the values the sketches are storing: a sharp variation from the expected fore-
cast values is flagged as an anomaly. A simple example of the use of sketches
in DoS attacks is the detection of SYN Flooding attacks [135], as described in
Gao et al. [56]. In this case, the sketch stores, for each time frame and each
key (dest IP, dest port), the difference between the number of SYN packets and
the number of SYN/ACKs, as shown in Figure 3.1. The model indeed assumes
that in a normal situation the number of observed SYN and SYN/ACK packets
would be almost balanced. If this is not the case, a DoS SYN Flooding attack is
detected. The sketch-based approach could potentially also be deployed with-
out the use of flows, relying in this case on header inspection. However, in
this case the data reduction gain provided by flows would not be achieved.
Gao et al. developed a prototype that receives exported flows from a netflow-
enabled router in real time.

A similar approach is proposed by Zhao et al. [159]. In this case, a data-
streaming algorithm is used to filter part of the traffic and identify IP addresses
that show an abnormal number of connections. The authors consider both the
case in which a host is the source of an abnormal number of outgoing connec-
tions (large fan-out), as well as the case in which a host is the destination of an



3.1 Denial of Service 27

+1

hash(1.2.3.4, 80)

Figure 3.1: Example of sketch.

unusual number of connection attempts (large fan-in). The first case it is likely
to match a scanning host, while the second is used for detecting DoS victims.
The method is based on 2D hash tables, clearly resembling the contributions of
Gao et al. [56] and, in Section 3.2, Li et al. [92]. In their paper, Zhao et al. also
apply a flow sampling algorithm. Sampling reduces the amount of data to be
processed and significantly raises the processing speed. However, it can in-
troduce measurement errors since not all the flows are considered. To solve
this issue, the authors develop statistical techniques to accurately estimate the
fan-in/fan-out of the considered hosts.

Kim et al. [78] describe several different types of DoS attacks in terms of
traffic patterns. A traffic pattern is an attack signature expressed in terms of
the number of flows and packets, the flow and packet sizes, as well as the
total bandwidth used during the attack. The authors present as example the
pattern differences between instances in the class of “flooding attacks”: SYN
Flooding (exploiting the resource exhaustion in old TCP stack implementation
in presence of half open TCP connections), ICMP flooding (provoking ICMP
replies from an unaware network towards the victim) and UDP flooding (a
stream of UDP packets aiming to exhaust the resource on the victim and pos-
sibly also the connection bandwidth towards the victim. The attack pattern
produced by a SYN Flooding attack is characterized by a large flow count, yet
small packet counts, as well as small flow and packet sizes and no constraints
on the bandwidth and the total amount of packets. The pattern is significantly
different from the one generated by an ICMP or UDP flooding attack, in which
we observe large bandwidth consumption and intensive packet transfer. Kim
et al. clearly identify the metrics they are interested in and formalize them into
detection functions, which give the likelihood of an observed traffic sequence to
be malicious.

In the context of DoS monitoring and detection, it is important to cite also
the work of Münz et al. [110], who propose a general platform for DoS detec-
tion. The system, known as TOPAS (Traffic flOw and Packet Analysis System),
acts as a flow collector for multiple sources and locations. The platform sup-



28 3 State of the art in flow-based intrusion detection

ports several real-time detection modules and it can be customized by the net-
work administrator. Examples of modules are a SYN flood detection module, a
traceback module (to allow identification of the network entry point of spoofed
packets) and a Web Server overloading module (focusing on DoS attacks using
HTTP requests). The work has been developed within the context of the Eu-
ropean Diadem Firewall project, which specifically focuses on DoS and Dis-
tributed DoS detection [35].

Attention must also be given to the work of Lakhina et al. [83, 85, 86, 84].
The analysis is conducted on flow aggregated measures, that is on Origin-
Destination (OD) flows between Points of Presence (PoP) on the Abilene [74]
and Sprint-Europe [139] networks. An OD flow aggregates all the flows having
a certain entry PoP and a certain exit PoP. The authors apply a mathematical
eigenvector-based approach, the principal component analysis, to this small
set of pairs (only n2, where n is the number of PoPs). In this way, it is possible
to decompose the traffic flowing through the backbone in traffic trends, called
eigenflows. Lakhina et al. identify three types of eigenflows: deterministic eigen-
flows that show a periodical trend (day-night pattern), spike eigenflows that
show isolated values that strongly deviate from the average and noise eigen-
flows that appears to be roughly Gaussian. The spike components reveal the
presence of a traffic anomaly. The proposed method is general enough to cap-
ture various kinds of anomalies, spanning from hardware failures to attacks.
Moreover, the method is appropriate for almost all the attack classes we are
interested in (DoS, scans and worms).

3.2 Scans

A second category of network attacks is scans. Scans are usually characterized
by small packets that probe the target systems. Due to their nature, scans can
easily create a large number of flows, since the attacker may contact several
different destination hosts using many source or destination ports. There are
three categories of scans: (i) a host scanning a specific port on many destination
hosts (horizontal scan); (ii) a host scanning several ports on a single destination
host (vertical scan); (iii) a combination of both (block scan). Figure 3.2 depicts the
possible scan categories, displaying on the x-axis the IP addresses and on the
y-axis the victim destination ports.

In the literature, scans have generally been investigated by considering
their most evident characteristic: the scanning source shows an unnaturally
high number of outgoing connections, cf. Zhao et al. [159]. Looking at host be-



3.2 Scans 29

1.1.1.1 1.1.1.2 1.1.1.255 1.1.2.1 IP

1024

1023

23

22

21

Block scan

Horizontal scan

V
e
rt

ic
a
l 
s
c
a
n

...

..
.

P
O
R
T

Figure 3.2: Categories of scans [79].

havior from an incoming/outgoing connections perspective allows addressing
DoS and scan attacks as different faces of the same problem: hosts with a sus-
picious and unusual fan-in/out. Similarly, Kim et al. [78] describe a scan in
terms of traffic patterns, as already proposed in the case of DoS. The authors
differentiate between network (horizontal) scans and host (vertical) scans.

Li et al. [92] extend the approach of Gao et al. [56], in Section 3.1, introducing
2D sketches, a more powerful extension of the original ones. 2D sketches are
suitable not only for DoS detection, but also for scan detection. The authors
hash a different key for each dimension of the sketch, improving in this way the
overall detection capabilities of the system. For example, we can think of a 2D
sketch with keys (dest port) and (src IP, dest IP). The first key is used to capture
information about the target service, while the second one describes pairwise
interactions. In Figure 3.3, for example, we store in a sketch information about
a connection from host 1.2.3.4 to port 80 of the destination host 5.6.7.8. Such
a sketch can be used for detecting SYN Flooding attacks, vertical scans and
horizontal scans. The first key can be used to select a column in the sketch,
as indicated in Figure 3.3. The values stored in such a column allow to infer
the nature of the attack, in this case discriminating between a SYN Flood or a
vertical scan.

Wagner et al. [154] propose to use the probabilistic measure of entropy to
disclose regularity in connection-based traffic (flows). Entropy has been intro-
duced in Information Theory in 1948 [131] and, generally speaking, is a mea-



30 3 State of the art in flow-based intrusion detection

+1

hash(1.2.3.4, 5.6.7.8)

hash(80) hash(80)

Figure 3.3: Example of 2D sketch, as in [92].

sure of randomness and uncertainty of a stochastic process. Entropy is also
related to loss-less data compression: the theoretical limit of the compression
rate of a sequence of bits is the entropy of the sequence. Starting from this
well-known result, Wagner et al. created an efficient analysis procedure based
on compression of sequences of network measurements. They observe that,
in the case of a scanning host, the overall entropy in a specific time window
will change. In particular, the presence of many flows with the same source
IPs (the scanning host) will lead to an abrupt decrease of the entropy in the
distribution of the source IP addresses. At the same time, the scanning host
will attempt to contact many different destination IPs on (possibly) different
ports, generating an increase in these entropy measurements. The combined
observation of multiple entropy variations helps in validating the presence of
an attack. Other approaches are based on logistic regression [58] and distances
from baseline models [140].

3.3 Worms

The third category that we take into consideration is worms. Worm behavior
is usually divided into a target discovery phase (the worm explores the net-
work in order to find vulnerable systems) and a transfer phase (the actual code
transfer takes place) [4, 89]. Code Red [161] and Sapphire/Slammer [104] are
examples of this mechanism. Flow-based detection systems usually focus on
the target discovery phase, since the transfer of malicious code cannot easily be
detected without analyzing the payload. In many cases, worm detection can
be similar to scan detection, and many researchers use the same approach for
both threats. The approach adopted by Wagner et al. [154], for example, can
naturally be extended to worms, as well as the ones of Gao et al. [56] and Zhao



3.3 Worms 31

et al. [159] (Sections 3.1 and 3.2).
Dübendorfer et al. [38] and Wagner et al. [39] attempt to characterize the

host behavior on the basis of incoming and outgoing connections. The pro-
posed algorithm assigns the hosts of a network to a set of predefined classes:
the traffic class, the connector class and the responder class. The traffic class in-
cludes hosts that send more traffic than what they receive. Hosts that show
an unusual high number of outgoing connections are part of the connector
class. Finally, hosts involved in many bidirectional connections belong to the
responder class. The definition of these classes is such that only suspicious
hosts will belong to them. In the proposed model, a host can also belong to
one or more classes. Figure 3.4 describes the three classes (sets) and their pos-
sible intersections. The method periodically checks the status of the hosts of an
entire network. Massive changes in the cardinality of one or more classes are
an indication of a worm outbreak. The authors validate their approach on fast
spreading worms such as Witty and Blaster.

Figure 3.4: Host classes ad their intersections [38, 39].

A different approach is taken by Dressler et al. [37]. The authors exploit
the correlation between flows and honeypots logs. In this case, the need for
a ground truth, i.e., a trusted source of information for the system validation,
made the authors rely on a honeypot. In this way, deploying at the same time
a honeypot, a flow monitor and a data collection database, it is possible to
carefully identify worm flow-signatures, i.e., a sequence of connections and flow-
related information about the scanning and transmitting behavior of a worm.

Finally, Collins et al. [24] propose a solution to the problem of hit-list worms



32 3 State of the art in flow-based intrusion detection

S
S

CC

C

C

C

C

C

C

S

CLIENT

SERVER

A ATTACKER

(a) Normal situation

S

S

CC

C

C

C

C

C

A

S

S

S

S

(b) Increased ver-
tex cardinality

S S

CC

C

C

C

C

C

A

(c) Enlarged con-
nected component

Figure 3.5: Example of graph based hit-list worm spreading analysis [24].

detection. A hit-list worm is a worm that bases its scanning strategy on the se-
quential probing of a predefined, usually human-compiled, list of vulnerable
hosts that are likely to be always online. This technique is used because worms
usually have a slow initial spreading phase, and the use of a hit-list consis-
tently increases the initial infection speed. Since hit-lists are commonly used to
start infections, detecting them as soon as possible is a useful containment tech-
nique. Collins et al. develop a graph-based algorithm that slices the network
according to a monitored protocol, focusing on protocols such as HTTP, FTP,
SMTP, and on Oracle traffic. They argue that the number of hosts normally us-
ing a certain protocol, as well as the pattern of communication between hosts,
is regular over time. This regularity is disturbed only when a new host starts
to scan the network following a hit-list. The authors rely on a graph theoret-
ical approach: they map the hosts on the vertexes of a graph, and describe
the communication patterns as connected components in the graph (connected
subgraphs with a maximal number of vertexes). For example Figure (a) depicts
the normal connection pattern in a network as a graph with 9 vertexes and 2



3.4 Botnets 33

connected components, of cardinality 5 and 4 respectively. In this framework, a
hit-list worm outbreak can perturbed the graph in two ways: (i) the worm will
contact hosts that are not normally contacted, therefore increasing the number
of vertexes in the network graph; this situation is Figure (b), where we now
observe a graph with 14 vertexes, (ii) the worm will contact servers that in nor-
mal condition would not have any communication exchange; the attacker will
act as a vertex that allows to merge different connected components; in Fig-
ure 3.5(c), the attacker merged the two original connected components into a
single one with cardinality 10.

3.4 Botnets

As explained in Section 2.2, Botnets consist of infected hosts (bots) controlled
by a central entity, known as master (or bot-master). As these networks tend
to be spread over multiple administrative zones, complete identification of a
Botnet is a difficult problem. Since bots are no longer harmful once the mas-
ter is isolated, a straightforward mitigation approach is to identify the master.
Nevertheless, as Zhu et al. [160] pointed out in their survey on Botnet research,
the defense against Botnets is not yet efficient and the research in this field is
still in its infancy.

As a matter of fact, many Botnets are controlled through Internet Relay Chat
(IRC) channels, which can be identified at flow level. Karasaridis et al. [77] pro-
pose a model of IRC traffic that does not rely on specific port numbers. The
authors address two main points. First, they propose a multistage procedure
for detecting Botnets controllers. Starting from reports of malicious activity
obtained from diverse sources (e.g., scan logs, SPAM logs, and viruses), the
authors identify groups of flows involved in suspicious communications (can-
didate controller conversations). These communications may happen between a
host and a candidate server (controller) that uses either an IRC port (e.g., 6667,
6668 or 7000) or that hides the control traffic using a different protocol. In the
second case, the candidate conversation is checked against the flow model. The
second aim of Karasaridis et al. is, once the controllers have been identified, to
group the suspected bots into behavioral groups, i.e., clusters of bots that show
the same activity pattern. For this purpose, they suggested a hierarchical clus-
tering procedure that groups the hosts based on their port activities. In [77],
the authors also explain why Botnet detection slightly differs from scan or DoS
detection. For scans and DoS, current research aims at real-time detection, with
alerts that permit the network administrator to intervene as soon as possible.



34 3 State of the art in flow-based intrusion detection

In the case of Botnets, only long time observations can lead to the identification
of the bots and the controller.

In a similar way, the work of Livadas et al. [96] and Strayer et al. [142] ap-
proach the problem by modeling the TCP flows of IRC chats. The authors
present the first results of a study pertaining to the use of machine learning
techniques for Botnet traffic identification. In particular, they structure their
approach in order to answer two research questions: is it possible to distin-
guish between (i) IRC and non-IRC traffic; (ii) Botnet IRC traffic and normal
IRC traffic. In the paper, the effectiveness of machine learning methods, such
as Naive Bayes classifiers, Bayesian networks and classification trees, is tested.
The input is an enriched version of flows (including additional information,
such as variance of the bytes per packet in the flow, or the number of packets
for which the PUSH flag is set). The work shows that automatic identification
of Botnet IRC traffic seems possible.

A different approach is proposed by Gu et al. [60]. They developed a Bot-
net detector, BotMiner, which is independent of Botnet Command and Control
protocols and structures. Gu et al. developed a detection framework that aims
to characterize a Botnet as a “coordinated group of malware instances that are
controlled via Command and Control channels”.

BotMiner sniffs the traffic at the observation point and conducts two paral-
lel analyses. On one side, it relies on flows for detecting groups of hosts with
similar communication patterns. On the other side, it inspects packet payloads
(via Snort) in order to detect anomalous activities. These activities are then
clustered in order to detect groups of hosts that have similar malicious behav-
ior. In both steps, unsupervised clustering techniques have been used, such as
the X-means algorithm [29]. As the authors describe, both step are necessary
in order to properly identify possible bots, and a cross-correlation phase is per-
formed in order to merge the results of the previous analysis and to extract
meaningful groups of malicious host that could form a Botnet. The approach,
which has already been implemented in a working prototype, shows good de-
tection results. Moreover, it clearly shows that the problem of Botnet detection
is more complex than the general problem of attack detection. A misbehaving
host, indeed, is not sufficient to indicate the presence of a Botnet. More sophis-
ticated intra-host communication analysis is needed to characterize the group
nature of Botnets.

Even though Gu et al. [60] and Karasaridis et al. [77] present better results
than Livadas et al. [96] and Strayer et al. [142], all the contributions clearly show
that the problem of Botnet detection still remains to a large extent unsolved.
This is mainly due to the subtle and highly dynamic evolution of Botnets. Since



3.5 Solutions classification 35

the research on Botnet identification is still in its infancy, a strong research effort
is needed to develop effective detection procedures.

3.5 Solutions classification

We now classify the state-of-the-art solutions presented in the previous sections
according to the detection taxonomy in Section 2.3.

We must first note, however, that not all the categories included in the
works of Debar et al. [32, 33] and Axelsson [5] are relevant in the case of flow-
based intrusion detection. In the first place, we are interested only in network
data, therefore we do not considered further the audit source location category.
The detection paradigm (state/transition-based) is applicable mainly to host-
based solutions, and for this reason has also not been addressed. We also have
not considered Axelsson’s security class, since only one of the contributions ex-
plicitly addresses the problem of attack resilience [56]. Finally, it is important
to note that the studied approach seems focused on developing flow-based
detection engines, and less effort is put on problems like interoperability be-
tween different instances of the IDS, or between the IDS and other network
components (firewalls, routers). Among the considered contributions, only a
few specifically address this subject, such as Li et al. [92] and Gao et al. [56].

Table 3.1, which presents our classification, gives some insight in the cur-
rent research trends in flow-based intrusion detection. As for payload-based
solution, the anomaly-/misuse-based classes play an important role: we can see
contributions in both fields. Some researchers, such as Münz et al. [110], Düben-
dorfer et al. [38] and Wagner et al. [39], developed compound methods. This is
due to the interest in combining the strengths of both anomaly and misuse-
based approaches, as well as to the increasing interest in multi-purpose plat-
forms that offer a shared base for different detection modules. On some occa-
sions [142, 159, 96], however, the detection approach is unclear or not specified.
It is also sometimes the case that the contributions address more general prob-
lems than detection and refer to security only as a possible application. An
example of this is the work of Zhao et al. [159], treating the general problem
of super-sources/destinations, i.e., hosts that for reasons also other that attacks
have a large number of connections. In other cases, the authors simply do not
provide enough details to permit a clear classification, as in the case of Strayer
et al. [142] and Livadas et al. [96].

By considering the behavior on detection, the focus seems to be on passive
solutions, completing their task with an alert to the network administrator.



36 3 State of the art in flow-based intrusion detection

The majority of the solutions, therefore, rely on human intervention for attack
mitigation and blocking. At the same time, nevertheless, Table 3.1 shows that
there is a clear preference for real-time solutions, which clearly indicate the need
for fast responses in flow-based intrusion detection.

All of the contributions rely on centralized data processing. Flows are a pow-
erful approach to data reduction, as already discussed in Chapter 1. Flow data
are particularly suitable to be exported towards remote collection points, mak-
ing it easy to develop a system based on distributed data collection points. The
majority of the solutions that we studied assume a single (centralized) collec-
tion point for the ease of analysis, but the authors do not explicitly exclude the
possibility of distributed collection.

3.6 IDS trends

The analysis of the state-of-the-art in the previous sections highlights emerging
trends in flow-based intrusion detection. The recent spread of 1-10 Gbps tech-
nologies, and the day by day increasing network usage and load, have clearly
indicated that scalability is a key problem. In this context, the use of flow-based
solutions for monitoring and detection help to solve the issue. They achieve,
indeed, data and processing time reduction, opening the way to high-speed de-
tection on large infrastructures. For the University of Twente, for example, we
estimate that the ratio between packets exported by NetFlow (containing the
flow records) and the packets on the network is, on average, equal to 0.1%.

The complete absence of payload, however, is in some cases still perceived
as the main drawback of flow-based approaches. For example, the use of flow-
based techniques makes it very difficult to detect so-called semantic attacks, i.e.,
attacks for which the disruptive power is in the payload, and which do not
create visible flow variations (bytes, number of packets or number of flows).
However, as we can see in the case of Botnet detection, researchers propose
to analyze flows to discover behavioral pattern, i.e., automatically group hosts
with a similar suspicious behavior in a certain period of time. For this class
of approaches, flow correlation is clearly a strong point. In our opinion, and
as argued in Chapter 1, however, flow-based intrusion detection is not meant
to substitute payload-based solutions, but to complement them in situations
where technological constraints make payload-based techniques infeasible.

Figure 3.6 shows, in a schematic time line, the evolution of payload-based
intrusion detection, flow-based technologies and flow-based intrusion detec-
tion. Payload-based solutions have been the first effort in developing network-



3.7 Summary 37

1980 2000 Today

 Payload-based Intrusion Detection

1998

Snort Bro

2000

IDS taxonomies 2004

Netflow v9

   Flow-based technologies

   Flow-based Intrusion Detection

Figure 3.6: Time line of evolution of intrusion detection and flow-based technologies.

based intrusion detection. Nevertheless, they are still today a meaningful ap-
proach to security. Figure 3.6 also shows the rise of flow-based technologies,
to which we referred in Chapter 2. Once flow-based monitoring became an
established technology, we can see how flows became also a source of data for
intrusion detection. Our analysis showed that the major efforts in flow-based
detection concentrate on DoS, scan and worm detection, while Botnet detection
appears to be a more recent research field.

3.7 Summary

In this chapter, we provided a survey of the state of the art in flow-based intru-
sion detection spanning the period 2002-2008.

Relatively to the attack classification presented in Chapter 2, flow-based
solutions are usually addressing only a subset of attacks, i.e., attacks that can
be detected without the need to monitor the payload content. Sections 3.1–3.4
summarized the main contributions in the area, grouped accordingly to the
attack category they address: Denial of Service, Scans, Worms and Botnets.

In Section 3.5 we made use of the intrusion detection taxonomy previously
introduced in Chapter 2 to classify the surveyed contributions. The results of
our analysis showed that the research effort is at the moment focused on passive
and centralized solutions with, primarily, centralized data collection. Moreover,
we also noticed an evenly shared interested between anomaly-based and misuse-
based system and a clear attention for real-time systems.

Finally, Section 3.6 outlined the evolution since the advent IDSs, of payload-
based IDS, flow-based technologies and flow-based intrusion detection.



38 3 State of the art in flow-based intrusion detection

System
D

etection
Behavior

on
U

sage
D

ata
D

ata
M

ethod
detection

Frequency
processing

collection
Lietal.[92]G

ao
etal.[56]

anom
aly

active
real-tim

e
centralised

distributed
Z

hao
etal.[159]

notspec
notspec

real-tim
e

centralized
distributed

K
im

etal.[78]
m

isuse
passive

real-tim
e

centralized
distributed

M
ünz

etal.[110]
com

pound
passive

real-tim
e

centralized
distributed

Lakhina
etal.[83,85,86,84]

anom
aly

passive
real-tim

e
centralized

centralized
W

agner
etal.[154]

anom
aly

passive
real-tim

e/batch
centralized

centralized
G

ates
etal.[58]

m
isuse

passive
batch

centralized
centralized

Stoecklin
etal.[140]

anom
aly

passive
batch

centralized
centralized

D
übendorfer

etal.[38][39]
com

pound
passive

real-tim
e

centralized
centralized

C
ollins

etal.[24]
anom

aly
passive

real-tim
e

centralized
centralized

D
ressler

etal.[37]
m

isuse
passive

real-tim
e

centralized
centralized

K
arasaridis

etal.[77]
m

isuse
passive

real-tim
e

centralized
centralized

Livadas
etal.[142][96]

notspec
passive

batch
centralized

centralized
G

u
etal.[60]

anom
aly

passive
real-tim

e
centralized

centralized

Table
3.1:C

ategorization
ofthe

state-of-the-artflow
-based

solutions
according

to
the

taxonom
y

introduced
in

C
hapter

2.



CHAPTER 4

Detecting attacks using flow data

Network attacks present a threat for both information integrity and network
performance. In Chapter 2 and Chapter 3, we gave an overview of the most
commonly observed attacks and the main flow-based approaches to detect
them. In this chapter, we will show that time series are a useful starting point
for intrusion detection. We will investigate how attacks can be characterized
based on flow data only. Moreover, we will argue that the analysis of traffic at
application level, namely performing a traffic breakdown, is beneficial to intru-
sion detection.

The present chapter is organized as follows:

• Section 4.1 describes our general approach.

• In Section 4.2, we describe the architecture used for collecting the flow
traces on which we base our analysis. The data collection has been con-
ducted on the University of Twente (UT) network and on SURFnet, the
Dutch Research Network [143].

• Section 4.3 and Section 4.4 present examples of traffic characterization for
two different application-layer protocols, namely Secure Shell Protocol
(SSH) and Domain Name System (DNS). In particular, the SSH traffic will
play an important role in the remainder of this thesis, since this protocol
appeared to be a common target of attacks and will therefore be used as
running examples.

• Finally, Section 4.5 presents our concluding remarks.



40 4 Detecting attacks using flow data

4.1 Analysis approach

The analysis we conduct in this chapter introduces two key-concepts of our
approach to flow-based intrusion detection:

• We approach the problem of traffic characterization by mean of flow-
based traffic time series. Since flows carry no payload, a single flow will
in general not provide enough information to prove that an attack is on-
going. We believe, however, that attacks, or more generically, anomalies
can be characterized looking at the evolution of flow traffic over time, as
presented in flow-based traffic time series. Moreover, time series allow
to analyze traffic in a streaming fashion, close to what would happen in
a real time system. Flows offer diverse metrics for building time series.
Some are directly derived from the definition of flow, such as the number
of different accessed ports in a time bin; other can be derived metrics,
such as the entropy of the IP space in a time bin, as in Wagner et al. [154].
We concentrate on the time series created based on the number of flows,
packets and bytes per time bin. A time bin can have a duration from a mil-
lisecond to several minutes. In this chapter, we will investigate if flow,
packet and byte time series are suitable for intrusion detection.

• We approach flow-based intrusion detection performing a traffic break-
down at application level. We argue that the separate analysis of diverse
traffic slices is beneficial to intrusion detection since it discloses events
that would otherwise remain hidden in the general traffic pattern.

4.2 Data collection

The traces on which we perform our analysis have been collected at two lo-
cations: the University of Twente and the Dutch Research Network, SURFnet.
The traces cover a period of time of two working days, that is between Wednes-
day, August 1, 2007, 00:00 and Thursday, August 2, 2007, 23:59. Figure 4.1
presents the architecture used during the data collection, which we will de-
scribe in Sections 4.2.1 and 4.2.2.

After the data collection, we post-process the flow records to create time
series. The time series describe the evolution over time of the total number of
flows, packets and bytes per time bin and they can be created based on the time
information contained in a flow record: start timestamp or end timestamp. In
other contexts, time series may also be created on the basis of the export time



4.2 Data collection 41

or the time the flow record is processed by the collector, as for example in the
case of NfSen [64]. We based the time series on the flow start time. This means
that, for each time bin in the time series, we consider all the flow records which
start timestamp falls into the considered time bin. We then calculate, for the
considered time bin, the total number of flow records and the sum of packets
and bytes. In the following, we select a time bin of 600 seconds.

INTERNET

SURFNET

UT

MONITORING

POINT

SURFNET 

CORE

MONITORING

POINT

UT

ACCESS 

Host

Router

Network

To UT 

traffic

From UT 

traffic

Figure 4.1: Data collection architecture.

4.2.1 The University of Twente access router

The UT network is a /16 network providing connectivity to the employees and
the students in the university buildings on the campus. The UT is connected
to the Internet via a 10 Gbps link and routes its traffic using a Netflow-enabled
router, as indicated in Figure 4.1. The router continuously exports a feed of
flow data, used by the network administrators for monitoring purposes. In the
UT router setup, no sampling is applied. During the monitoring period, we
analyzed the flows exported by the router.

Figure 4.2 presents the combined incoming/outgoing UT load during the
data collection. The time series is based on a time bin of 600 seconds, for this
analysis a good compromise between accuracy and number of samples. This
means that each data point accounts for the total amount of bytes transferred
over the UT network in the previous 600 seconds. The UT traffic shows a clear



42 4 Detecting attacks using flow data

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

01/08
04:00

01/08
08:00

01/08
12:00

01/08
16:00

01/08
20:00

02/08
00:00

02/08
04:00

02/08
08:00

02/08
12:00

02/08
16:00

02/08
20:00

G
bp

s
UT

Figure 4.2: Byte time series, showing UT traffic.

day-night pattern, with peak of activity between 8:00 and 20:00 and with a min-
imum around 4:00. During the data collection, we measure an average load of
652 Mbps, with peaks up to 1.01 Gbps during daytime and minimum of 259
Mbps at night. The total amount of flow records during the observation pe-
riod is of 982.7 million, which, once exported, corresponds to 0.2% of the total
amount of transferred bytes. We calculate that we achieve a data reduction
factor of 30 as ratio between the number of packets on the network and the
number of exported flow records.

4.2.2 The SURFnet core routers

The SURFnet infrastructure has national coverage and offers high-speed con-
nectivity to the main research and educational institutions in the Netherlands.
SURFnet also functions as network service provider for these institutions, rout-
ing their traffic towards main backbone networks, such as, among others, Gé-
ant [59] and Internet2 [74]. The SURFnet topology consists of edge routers,
providing connectivity to the users’ domain access routers, and core routers,
interfacing SURFnet to other backbones. Like UT, also SURFnet relies on Net-
flow for monitoring purposes. During the data collection, we analyzed the



4.2 Data collection 43

flow data exported by the core routers, indicated in Figure 4.1. To reduce the
load on routers, SURFnet applies systematic sampling with a ratio 1:100 dur-
ing the flow creation (see Section 2.1.4). In our analysis, we estimate the real
amount of traffic (packets and bytes) by scaling these metrics by a factor of 100.

 0

 2

 4

 6

 8

 10

 12

01/08
04:00

01/08
08:00

01/08
12:00

01/08
16:00

01/08
20:00

02/08
00:00

02/08
04:00

02/08
08:00

02/08
12:00

02/08
16:00

02/08
20:00

G
bp

s

SURFnet

Figure 4.3: Byte time series, SURFnet traffic.

Figure 4.3 shows the SURFnet traffic load during the data collection. Also
in this case the time series are based on time bins of 600 seconds. Like UT,
SURFnet traffic presents a clear day-night pattern, with peak of activity be-
tween 8:00 and 18:00 and with a minimum around 4:00. Around 16:00, on
August 1, 2008, the load on SURFnet drops abruptly. Since no error has been
detected in our measuring setup, we suspect the down-peak to be caused by
a flow creation and exporting failure in the SURFnet infrastructure, or, less
likely, to a network hardware failure. However, this event is not affecting our
analysis. During the monitoring period, SURFnet presented an average load
of 7.73 Gbps with peaks of 10.5 Gbps. The minimum load has been of 4 Gbps.
SURFnet also exported 523.7 million flows, which correspond to 0.01% of the
total amount of transferred bytes. We have therefore a data reduction factor of
400 as ratio between the number of packets on the network and the number of
exported flow records.



44 4 Detecting attacks using flow data

Note: It is interesting to notice that the number of flows measured
in SURFnet is smaller than the number of flows generated by the
UT network. This is due to the fact that, in the case of flows, it is
not possible to compensate for the sampling by means of a scaling
factor as for packets and bytes. To explain this, let us consider two
extreme cases. First, let us suppose that each packet passing the
monitoring point generates a flow and that the monitoring inter-
face samples with 1:100 sampling rate. Then, we can assume that
the number of exported flow records will correspond to 1/100 of the
real number of flows. However, let us now consider the opposite
case, in which all the packets passing the monitoring point belong
to the same flow. In this case, it would be incorrect to assume that
we observed 100 different flows. In real traffic, it has been shown
that a small number of flows account for the biggest percentage
of the traffic, while the size of the majority of the flows is small
[108, 51]. This situation is known as “the elephant and mice phe-
nomenon”. Fioreze [51] also shows that, since elephant flows gen-
erate a large amount of packets, there is a higher probability that
a sampled packet belongs to one of these flows. In light of these
considerations, we did not apply any scaling factor to the number
of flows.

Figures 4.2 and 4.3 do not suggest the presence of network anomalies. How-
ever, during the monitoring, UT seemed to be subject of repeated and diverse
attacks, even if without apparent real damage. The application breakdown
of the traffic traces will make the attacks clearly visible. In the following sec-
tions, we focus on two examples: SSH and DNS traffic. The choice of these two
specific applications is due to the fact that, quite surprisingly, the SSH service
resulted to be one of the major attack targets, both in intensity and in number of
attacks. By experience, we also noticed that DNS tends to produce a quite reg-
ular traffic volume. This characteristic makes it quite easy to detect suspicious
variations in traffic intensity.

In the following, we will give a detailed description of the traffic anoma-
lies concerning SSH and DNS traffic, in both the UT and SURFnet traces. In
particular, we are interested in (i) assessing the effect of sampling on network
anomalies, that is, checking if anomalies can still be visible also in the presence
of sampling; (ii) validating our anomalies by checking if they appear consis-
tently in both networks. In order to do this, in the following we analyze only



4.3 SSH traffic 45

the UT traffic flowing through the SURFnet network, namely the flows in the
SURFnet trace which source or destination host belongs to the UT network, as
suggested in Figure 4.1. Packet and byte SURFnet time series are scaled by a
factor of 100.

4.3 SSH traffic

SSH is one of the most common protocols to connect with remote hosts. SSH
corresponds to 1% of packets and the 1.2% of bytes of the total incoming-
outgoing UT traffic. This section will characterize the normal and anomalous
SSH traffic as it can be observed at flow level. We analyze flow, packet and byte
time series and highlight the changes due to network anomalies.

4.3.1 Traffic analysis

Figure 4.4 shows the SSH byte traffic time series in the observation time frame.
In the same graph, we show both the UT and SURFnet traffic volumes. The
SURFnet traffic has been scaled to remove the effect of sampling. The two
measurements present the same trends. In general, the bytes trend in the ob-
servation period is quite irregular with sharp peaks and down-peaks. This
huge variation in the byte time series can be explained considering the diverse
usage of the SSH protocol: interactive traffic during a terminal session or file
transfer by means of scp or sftp. However, the irregularities in the time series
do not provide any evidence of an anomalous activity.

On the other side, looking at the packet time series (Figure 4.5), it is possible
to note that in the morning of August 2, the UT network saw a massive increase
of its SSH traffic. The time series is indeed characterized by sudden peaks
during which the number of packets per time bin increases by several millions.
In some cases, we observe a peak of up to almost 8 million packets, more than
6 times higher than the average number of packets per time bin. If we consider
the flow time series, as in Figure 4.6, we can observe how the trend is confirmed
also in this case. The time series presents peaks during which the number of
flows per time bin raises from a few thousand to half a million. Again, the
number of flows per time bin in SURFnet follows the behavior of the UT trace,
despite the use of sampling. This phenomenon is particularly visible during
the massive peaks, namely in the early morning of August 1 and in the late
morning of August 2.



46 4 Detecting attacks using flow data

 0

 0.5

 1

 1.5

 2

 2.5

 3

01/08
04:00

01/08
08:00

01/08
12:00

01/08
16:00

01/08
20:00

02/08
00:00

02/08
04:00

02/08
08:00

02/08
12:00

02/08
16:00

02/08
20:00

by
te

s 
(G

B)
UT

SURFnet

Figure 4.4: Byte time series, showing UT and SURFnet (estimated values) SSH traffic.

Summarizing, at the moments of major SSH activity, we observe a suspi-
ciously high number of flows, created by a higher number of packets than
usual. The effect of this activity on the bytes time series, however, is not suffi-
cient to indicate the presence of an anomaly if we consider this metric by itself.
The byte activity in the anomaly time frame is indeed similar to the activity we
observe on August 2, between 16:00 and 23:00. This second time frame, how-
ever, is not correlated to any suspicious activities in the packet and flow time
series. This suggests that the hosts involved are sending/receiving relatively
small packets to/from many different hosts: this scenario suggests the possi-
bility of a scan. A more detailed inspection of the trace shows indeed that few
source hosts made the UT network object of massive SSH dictionary attacks
, during which the attackers were scanning the UT network and performing
user and password guessing on almost all the hosts.

It is important to underline that it is the simultaneous observation of all the
three metrics, namely flows, packets and bytes, which permits to discriminate
between normal and malicious traffic. For example, a peak in the packet time
series can be caused by both a file transfer and a scan. However, if we would
observe also the byte and flow time series, we could see that a scan would
produce a peak in the flow time series, but not in the byte time series. The



4.3 SSH traffic 47

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

01/08
04:00

01/08
08:00

01/08
12:00

01/08
16:00

01/08
20:00

02/08
00:00

02/08
04:00

02/08
08:00

02/08
12:00

02/08
16:00

02/08
20:00

pa
ck

et
s 

(M
)

UT
SURFnet

Figure 4.5: Packet time series, showing UT and SURFnet (estimated values) SSH
traffic.

traffic characteristics during the peaks made the SSH traffic trace worthy of
deeper analysis. In the following, we concentrate only on the peak in the time
frame from 7:50 to 10:10 on August 2, when the number of flows per time
bin rises up to a maximum of almost 600000 flows. We will refer to this time
window as SSH anomalous time frame.

4.3.2 Normal versus anomalous traffic

The goal of the following analysis is to prove that indeed the previously iden-
tified peak is due to an attack. To characterize the network behavior during the
anomaly, we need to compare it with a second observation time frame, which
will provide us an overview of the network during a benign interval. The time
window that we have chosen spans over a period of 2 hours, between 8:00 and
10:00 of August 1. During this time frame, we are not observing any fast vari-
ation of the flow frequency. Since we are interested in SSH scans and we are
assuming that SSH scans produce variation in the flow frequency, we also as-
sume the second time frame to be an example of normal network behavior. We
refer to this time window as normal time frame.



48 4 Detecting attacks using flow data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

01/08
04:00

01/08
08:00

01/08
12:00

01/08
16:00

01/08
20:00

02/08
00:00

02/08
04:00

02/08
08:00

02/08
12:00

02/08
16:00

02/08
20:00

flo
ws

 (M
)

UT
SURFnet

Figure 4.6: Flow time series, showing UT and SURFnet SSH traffic.

Looking at the number of active hosts in the anomalous and normal time
frames, Table 4.1 shows that the normal time frame is characterized by a bal-
anced number of sources and destinations, both in UT and SURFnet. On the
contrary, in the anomalous time frame, we can observe an increased number
of destinations, several times bigger than the number of sources. The number
of destination hosts in the UT trace suggests that the scan covers the entire UT
network (that is, as reported in Section 4.2, a /16 network, i.e., with up to 65534
hosts), while the increased number of source hosts is an effect of the scanning
activity (some of the destination hosts react to the probes). A similar trend is
visible in SURFnet, even though the number of different sources and destina-
tions is in this case affected by the sampling. We therefore observe a smaller
number of IP addresses in the case of SURFnet.

The study of the top active sources w.r.t. the number of originated flows
shows that the anomalous time frame is dominated by the presence of three
major senders, which caused the attack. Table 4.2 shows how the traffic, ex-
pressed in flows, packets and bytes, is distributed with respect to the sources
during the anomalous time frame. Together, the three most active sources are
responsible for 98 - 99% of the total amount of flows in both UT and SURFnet.
All the three hosts were scanning the UT network. As already suspected dur-



4.3 SSH traffic 49

Anomalous time frame Normal time frame
Sources Destinations Sources Destinations

UT 2763 65342 629 647
SURFnet 597 3020 192 192

Table 4.1: Number of distinct source and destination addresses during the anomalous
and normal time frames in the UT and SURFnet traces.

ing the time series analysis, also the number of packet is unbalanced towards
the major senders (responsible for 70% circa of the packets in both UT and
SURFnet). Finally, it is important to notice that the scan does not deeply affect
the bytes distribution: 75% and the 69% of the bytes volumes, respectively, in
UT and SURFnet is still due to normal traffic.

Flow Percentage Packets Percentage Bytes Percentage
UT SURFnet UT SURFnet UT SURFnet

Top 1 82.6% 89.5% 65.7% 71.2% 22.3% 28.1%
Top 2 13.5% 9.2% 6.7% 7.3% 2.3% 2.8%
Top 3 2.1% 0.3% 0.4% 0.3% 0.1% 0.1%

98.2% 99% 72.8% 78.8% 24.7% 31%
Others 1.8% 1% 27.2% 21.2% 75.3% 69.0%

Table 4.2: Percentage of flows, packets and bytes for the attackers and the not
suspicious hosts during the SSH anomalous time frame.

To give a visual representation of the network behavior during the anoma-
lous and normal time frame, we present the scatter-plot in Figure 4.7. For each
600 seconds bin during the normal and anomalous time frame, we measure the
number of packets, bytes and flows. We assign to each metric an axis in a 3D
space and plot each time bin as a point in this space. Figure 4.7 shows a repre-
sentation of the anomalous and normal time frame. In case of the anomalous
time frame, also the projections on the planes are plotted. The graph allows us
to see that points belonging to the normal time frame tend to group together
in a part of the space characterized by relatively small number of packets and
bytes. Moreover, the time bins in this group show a very low number of flows.
On the contrary, the spatial disposition of the anomalous time frame describes
a totally different behavior. Also in this case, the time bins during the anomaly
tend to be spatially close. This is an indication of the fact that they share com-



50 4 Detecting attacks using flow data

mon features. In addition, as emphasized by the projections, points in this
group present high values of the coordinates x (packets) and z (flows), while
only few cases show a massive byte volume (y axis). Most importantly, the
two groups are spatially distant, confirming that anomalous and normal time
intervals show clearly detectable differences.

 0  1  2  3  4  5  6  7  8  9  0
 0.5

 1
 1.5

 2
 2.5

 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

flo
w

s 
(M

)

ANOMALY
NORMAL

ANOMALY PROJECTION

packets (M) 

bytes (G)

Figure 4.7: SSH anomalous and normal time frame space disposition (UT trace).

4.4 DNS traffic

DNS is the second trace we analyze. Commonly, DNS is responsible for less
than 1% of the incoming-outgoing data volume at the UT network. In the fol-
lowing, we characterize the normal and anomalous DNS traffic and analyze
flow, packet and byte time series.

4.4.1 Traffic analysis

In Section 4.3, SSH traffic seems to suggest that the analysis of the flow time
series can easily indicate the presence of anomalies. Unfortunately, this hy-
pothesis does not hold for DNS traffic. As it can be seen in Figure 4.8, the
number of flows per time bin is almost constant during the entire observation
period and nothing suggests the presence of an anomaly.



4.4 DNS traffic 51

 0.0001

 0.001

 0.01

 0.1

 1

01/08
04:00

01/08
08:00

01/08
12:00

01/08
16:00

01/08
20:00

02/08
00:00

02/08
04:00

02/08
08:00

02/08
12:00

02/08
16:00

02/08
20:00

flo
ws

 (M
)

UT
SURFnet

Figure 4.8: Flow time series, showing UT and SURFnet DNS traffic (in logarithmic
scale).

The situation appears to be different if we do not observe the flow time
series but instead the packet and byte time series. Figures 4.9 and 4.10, indeed,
show that in the time window between 1:40 and 7:00 on August 1, the UT
network saw a massive increase in the volume of DNS traffic, both in packets
and in bytes. In particular, both measures rise abruptly from a few thousands
to millions (between 10 to 28 million in a time bin). The SURFnet trace shows
the same behavior, even in presence of sampling.

The just described anomaly will not be noticed if only the flow time series is
considered. This observation is particularly relevant because it witnesses that
the flow time series is not expressive enough to characterize DNS anomalies.
By definition, DNS traffic produces quite small UDP packets during the query
process and it relies on TCP only in case of databases updates. Since the anal-
ysis of the TCP and UDP percentage during the anomaly shows that the 99.7%
of the flows are UDP and they are responsible for 99.9% of the bytes volume,
we can exclude that the anomaly is caused by a database update. We proceed
now for a more detailed analysis of the anomaly.



52 4 Detecting attacks using flow data

 0

 5

 10

 15

 20

 25

 30

01/08
04:00

01/08
08:00

01/08
12:00

01/08
16:00

01/08
20:00

02/08
00:00

02/08
04:00

02/08
08:00

02/08
12:00

02/08
16:00

02/08
20:00

pa
ck

et
s 

(M
)

UT
SURFnet

Figure 4.9: Packet time series, showing UT and SURFnet (estimated values) DNS
traffic.

4.4.2 Normal versus anomalous traffic

As already for SSH, a non-anomalous interval has been chosen for comparison
purposes. The DNS normal time frame spans between 12:00 and 17:00 of August
1. The large amount of bytes sent depicts a different scenario compared to the
one presented in Section 4.3: the sharp variation in the byte and packets time
series, together with the use of a large percentage of UDP packets suggests in-
deed the possibility of a DoS attack against a few number of destination hosts.
The study of the anomalous time frame w.r.t the volume of byte sent clearly
shows the prevalence of three attack sources. Differently from the scenario of
the SSH anomaly, the three sources are creating on average less that 300 flows
each, being in this way responsible for only the 0.003% of the total UT flows.
On the other hand, each of these sources generates a packet volume almost 50
times bigger than all the other sources together. This ratio, measured in terms
of bytes is 20. The SURFnet measurements show a similar ratio. As it can be
seen in Table 4.3, the top sending hosts are responsible for more than 99% of
the packets and 98% of bytes in both UT and SURFnet traces. A deeper analy-
sis of the traces shows that the three major sources share a single destination,



4.4 DNS traffic 53

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

01/08
04:00

01/08
08:00

01/08
12:00

01/08
16:00

01/08
20:00

02/08
00:00

02/08
04:00

02/08
08:00

02/08
12:00

02/08
16:00

02/08
20:00

by
te

s 
(G

B)

UT
SURFnet

Figure 4.10: Byte time series, showing UT and SURFnet (estimated values) DNS traffic.

towards which 33GB of data have been sent during the entire anomalous time
frame (with packets of constantly exactly 46B in size). This configuration sup-
ports the thesis that the destination host has been victim of a distributed DoS
targeting the DNS service.

Flow Percentage Packets Percentage Bytes Percentage
UT SURFnet UT SURFnet UT SURFnet

Top 1 0.01% 0.14% 35.3% 35.3% 34.9% 34.8%
Top 2 0.01% 0.15% 32.6% 32.6% 32.3% 32.5%
Top 3 0.01% 0.14% 31.4% 31.4% 31% 31%

0.03% 0.43% 99.3% 99.3% 98.2% 98.3%
Others 99.97% 99.57% 0.7% 0.7% 1.8% 1.7%

Table 4.3: Percentage of flows, packets and bytes for the attackers and the not
suspicious hosts during the DNS anomalous time frame.

As done previously in Section 4.3, a 3D representation of the anomalous
and normal time frames is now presented in Figure 4.11. Also in this case, the
spatial disposition of the points in the two groups confirms the diversity be-
tween anomalous and normal time intervals. Points in the normal time frame



54 4 Detecting attacks using flow data

show a relative variability in the number of flows, but almost no changes in
the number of packets and bytes. On the contrary, the points in the anomalous
group are characterized by large x and y coordinates (packets and bytes). Only
two time bins during the anomalies are distant from the majority: they show
indeed a relatively small number of packets and bytes. Nevertheless, the pro-
jection of the anomaly on the packet-byte plane confirms that these points are
in any case anomalies. All the points in the anomalous time frame, including
the two just described, belong indeed to the same line. This is a consequence
of the fact that the attackers were flooding the victim with fixed size packets.
The points that appear to diverge from the general behavior are the result of
the concluding phase of the attack, a fluctuation visible also in Figures 4.9 and
4.10. Last, in the graph it is possible to see that the number of flows during the
anomalous and normal time frames do not differ enough to detect the ongoing
attack, confirming the observation about the flow time series.

 0
 5

 10
 15

 20
 25

 30  0
 0.5

 1
 1.5

 2
 2.5

 3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

flo
w

s 
(M

)

ANOMALY
NORMAL

ANOMALY PROJECTION

packets (M) 

bytes (G)

Figure 4.11: DNS anomalous and normal time frames space disposition (UT trace).

4.5 Concluding remarks

This chapter presented the analysis we conducted on flow-based traces col-
lected on the University of Twente and on the Dutch National Research Net-
work, SURFnet.



4.5 Concluding remarks 55

In Section 4.2, we described the measurement setup used to collect the
traces, showing that the analysis of the network traffic as a whole is likely to
hide ongoing attacks. Sections 4.3 and 4.4 describe in detail two flow anoma-
lies, on the SSH and DNS traffic time series, respectively.

The analysis we performed on UT and SURFnet traces leads us to the fol-
lowing conclusions. First, our analysis showed that flow-based time series can
be a meaningful approach to flow-based intrusion detection. Time series allow
us to analyze data, keeping into account temporal relations between events.
Flows are suitable for the creation of time series based on the number of flows,
packets and bytes per time bin. In our analysis, we investigated whether the
three metrics are all needed to identify intrusions, or whether they can be con-
sidered separately. The analysis of the SSH and DNS anomalies led to the con-
clusion that, to correctly identify suspicious traffic in general, all three met-
rics should be taken into consideration. More specifically, for certain classes
of attacks, the choice to monitor only a single metric may still be sufficient.
However, the decision of which metric is the most indicative of an intrusion
has to be taken based on which application we are monitoring. This means
that we can choose to monitor the number of flows in the case of SSH attacks,
but that packets or bytes are preferable in the case of DNS traffic. Our study
proved that this conclusion also holds in the presence of sampling. Sections 4.3
and 4.4 showed that the sampled traces closely approximate the non-sampled
traces, which means that accurate anomaly detection is possible even in case of
sampling. This observation suggests that the development of scalable, but still
accurate intrusion detection solutions is possible.

Second, our analysis also showed that considering the network traffic as
a whole would likely hide the presence of network anomalies. Such anoma-
lies can instead be made evident by the traffic breakdown according to the orig-
inating application, as we do in the case of SSH and DNS. This approach
entails that, at flow level, intrusion detection should take advantage of the
data-reduction and anomaly-exposure induced by the traffic breakdown. This
should lead to the design of modular intrusion detection systems targeting spe-
cific attacks.

Flow-based time series give us information about the amount of data trans-
ferred over the network. However, as pointed out in Section 1.1.1, flows can
also provide information about network interactions. Recently, we observed a
growing interested on how such information can be used for intrusion detec-
tion. By considering point-to-point communications, it is possible to identify
sequences of correlated flows, or flow patterns, that define network services
as well as attack fingerprinting. An example in this direction is the work of



56 4 Detecting attacks using flow data

Marinov et al. [99], that proposes an ad-hoc flow records query language able
to describe causality dependencies between flows. The authors describe, as ex-
ample, the fingerprinting of the Blaster worm. Point-to-point communications
patterns can be exploited also in scenarios in which the network is well-behaved,
meaning with this that we are dealing with a fixed number of devices, few pro-
tocols and regular communications. This is the case for example for intrusion
detection in SCADA (Supervisory Control and Data Acquisition) networks, a
topic outlined in the work of Barbosa et al. [7].



CHAPTER 5

Manual ground truth generation

Properly classifying objects into classes in an automatic manner is a prob-
lem that intersects many different research areas. Classification, or supervised
learning, is a vastly studied topic in machine learning [23] and it finds ap-
plication in fields such as, for example, computer vision [130], text classifica-
tion [129], computer aided diagnosis and medical imaging [61], bioinformatics
[12] and intrusion detection [87]. A common problem among all the classifi-
cation approaches is the need for validation data, and more specifically, data
for which the correct classification is known. Such data sets are often known
as ground truth . Ground-truth data are difficult to acquire, since they require
deep domain knowledge, they may be privacy sensitive and, not less impor-
tant, they need in most cases to be manually created, a task that requires con-
siderable effort. Intrusion detection, that aims to classify traffic into benign and
malicious instances, is in this respect no exception.

In Chapter 6 we will approach the problem of automatic creation of ground-
truth data sets. In this chapter, instead, we investigate how to manually create
a flow-based data set of intrusion-relevant events. In particular, we will give
answer the following research questions:

• Which requirements should a flow-based labeled data set for intrusion detection
meet?

• Which infrastructure is suitable for the data set collection?

• How can we label the collected data?

This chapter is organized as follows:

• Section 5.1 describes the ground-truth problem and specifies which re-
quirements a labeled data set should meet.



58 5 Manual ground truth generation

• Section 5.2 discusses possible choices for the data collection setup, such
as monitoring at network level, subnetwork level or host level. The same
section also describes the setup best suited for our research, which is a
honeypot.

• Section 5.3 presents the procedure followed to label the data set.

• Section 5.4 provides insights into the resulting data set, describing its
main characteristics.

• Finally, Section 5.5 presents the lesson learned on the topic of manual
flow labeling.

5.1 Motivation and objectives

When proposing a new IDS, researchers usually evaluate it by testing it on la-
beled (or annotated) traffic traces, i.e., traffic traces with known and marked
anomalies and incidents [101]. We refer to these traces as ground truth. In
Section 5.1.1, we give an overview of the existing ground-truth data sets for
intrusion detection, while in Section 5.1.2 we clarify why there is a strong need
of this type of traces. Finally, Section 5.1.3 describes which requirements a data
set should meet.

5.1.1 Existing traces

Even though trace sharing is a long-lasting goal of the network monitoring
community, with repositories like Caida DATA [147], DatCat [30], Crawdad
[25], Simpleweb [132] and the MOME project [103], these traces are usually not
labeled and not specifically targeted to intrusion detection. Only few payload-
based labeled data sets for evaluation of IDSs exist and are publicly available:

• The DARPA 1998 and DARPA 1999 data sets, developed by the MIT Lin-
coln Labs and sponsored by the US Defense Advanced Research Projects
Agency. The DARPA data sets [93, 94, 65] consist of artificial background
traffic, which simulates the normal network usage of an air force base,
combined with malicious attack traffic.

• The KDD99 data set [141] and the NSL-KDD data set [146]. The KDD99
data set is build upon the traffic in the DARPA 1998 data set, but uses an
extended labeling. The NSL-KDD data set [146], on the other hand, is a



5.1 Motivation and objectives 59

reduced version of KDD99 that aims to avoid record redundancy in the
data set. Both data sets have been in use in the data mining and machine
learning community, but researchers in the area of intrusion detection
still refer directly to the DARPA data sets.

• Considering the constant evolution of network threats and the conse-
quent aging of the DARPA traces, a recent attempt in addressing the
problem of shared labeled data sets comes from the US Military Academy
West Point, New York [124]. The authors suggest that network cyber-
defense competitions, such as the Defcon’s Capture The Flag (CTF) com-
petition and Cyber Defense Exercise (CDX), can be used for creating la-
beled data sets. The authors propose a general approach for data captur-
ing during such competitions and illustrate their approach by proposing
a first data set. The data set is publicly available, but we are not aware of
any IDSs that have been evaluated using this data set.

• A recent attempt to propose a database of labeled traffic for IDSs compar-
ison and evaluation is the work of Owezarski [113]. The database consists
of a collection of packet traces from the METROSEC experimental plat-
form [102]. The collected traces include benign background traffic, attack
traffic and, more generally, network anomalies. Given its recent publi-
cation, we are currently not aware of contributions that make use of this
database. Moreover, at the moment the database cannot be publicly re-
leased due to privacy concerns.

Considering the current situation, research on IDS generally suffers from a lack
of shared data sets for benchmarking and evaluation. Several difficulties pre-
vent the research community to create and publish such traces, in the first place
the problem of balancing between privacy and realism. It is natural that the
most realistic traces are those collected “in the wild”, for example at Internet
service providers or in corporate networks. Unfortunately, these traces would
reveal privacy sensitive information about the involved entities, hence, they
are rarely published. On the other hand, artificial traces, i.e., traces that have
not been collected but artificially generated, can avoid the problem of privacy
but they usually require deeper domain knowledge to achieve a realistic re-
sult. Therefore, most publications use non-public traffic traces for evaluation
purposes. Moreover, we have no knowledge of any publicly available labeled
flow-based traffic trace.



60 5 Manual ground truth generation

5.1.2 Why ground truth is important

Knowing the ground truth for any of the classification problems in intrusion
detection, bioinformatics, or computer vision can be thought as “knowing the
right answer”. Let us think of the following situation: a friend asks you as a
personal favor to help him correcting an exam of the first year medicine stu-
dents in his university. It is a true/false test, therefore the task, even though
time consuming, does not appear to be too difficult. However, your friend
forgets to provide you with the right answers, the ground truth for the exam.
Since you are most probably not an expert on the topic, it is clear that even the
task of correcting a true/false test has become impossible.

In intrusion detection, ground truth is useful, for example, in the following
situations:

• Repeatability of experiments: a desirable quality of a scientific approach is
that the results can be reproduced and the experiments repeated later in
time. In intrusion detection, this goal is in some case difficult to achieve.
An example is the spam detection approach that we proposed in Sperotto
et al. [138]. The paper, which followed from the master thesis of Vliek
[153], proposes a set of rules to identify possible spamming host at flow
level. In the validation phase, since there was no information about the
content of any SMTP connection, it was crucial to find a reliable source
that could confirm that a host was indeed spamming. We relied therefore
on DNS blacklists, Internet services that publish lists of offending IP ad-
dresses. However, DNS blacklists are by definition volatile, since a host
that sent spam in the past could, in a later stage, be rehabilitated. Since
DNS blacklists can be queried but not easily downloaded, their volatility
makes repeatability of experiments a complex task.

• Validation of new approaches: researchers continuously propose new ap-
proaches to the intrusion detection problem. The aims are both to deal
with specific attacks and to improve existing detection techniques. How-
ever, every new approach needs to be validated. An example among
many is the work of Bolzoni et al. [14], in which the authors show the
effectiveness of their approach by benchmarking it against the DARPA
1999 data set, considered the de facto standard payload-based intrusion
detection data set until the half of the 2000s.

• Comparison of different approaches: intrusion detection approaches are not
only validated. It is often the case that the gain in performance is quan-



5.1 Motivation and objectives 61

tified with respect to other state-of-the-art solutions. Examples are the
works of Lippman et al. [93], proposing the DARPA 1998 data set and
comparing the detection performance of several IDSs tested on this data
set, or the work of Lazarevic et al. [88], that focuses on the performance
of anomaly-based systems. When it is needed to compare different ap-
proaches, it is fundamental to benchmark the systems against the same
data set.

• Training and parameter tuning: as described in Chapter 2, anomaly-based
systems rely on a model of normal behavior. However, to properly ap-
proximate the benign status of the system under protection, it is neces-
sary to properly tune the model parameters, usually by means of a train-
ing phase. Anomaly based systems rely on ground-truth traces for the
training process, that is, to compute the model parameters that certify a
correct distinction between malicious and benign traffic. Examples are
the work of Zanero [158] and Bolzoni et al. [14], where the training is
conducted on an attack free part of the DARPA 1999 data set.

There are strong motivations for creating and sharing ground-truth data sets.
However, even if it is a required step for development and evaluation of IDSs,
ground truth can hide several pitfalls. First, information included in the data
set might not be representative of real traffic. The DARPA data sets have
been the object of such criticism in the work of McHugh [100] and Mahoney
et al. [97]: the provided background traffic has not been proved to be similar to
a realistic scenario; the ratio between malicious and background traffic is not
representative of a real situation; the capturing architecture is too simple and
artifacts in the traffic might be used for achieving a high detection rate. How-
ever, as McHugh clearly states, despite the criticism, the DARPA data sets are
“the only work of this kind worthy the critical effort”. A second pitfall is to sim-
plify the data sets for the need of research fields other than intrusion detection.
The example in this case is the NSL-KDD data sets: a subset of the DARPA’98,
derived from the KDD’98 data set and specifically created for testing new ma-
chine learning algorithms. The data set has been cleaned, simplified and made
smaller, to avoid that specific traffic characteristics, such as for example the
presence of duplicated records, might bias a learning algorithm. Clearly, such
data set fits the requirements of the machine learning community, but is not
suitable anymore for intrusion detection. Finally, a last pitfall concerns the risk
of optimizing the detection for a known problem. Achieving good detection
results on a single ground-truth data set does not necessary imply that the de-
tector will perform at the same way in a different scenario.



62 5 Manual ground truth generation

5.1.3 Data set requirements

Despite the importance of ground truth for validating and evaluating IDSs,
such data sets are generally time consuming to build and need a structured
creation process. In this subsection, we will describe the requirements a data
set should meet and that will lead us during the data collection process. The
requirements are:

• Realism: a data set is realistic if it describes a daily situation on the moni-
toring point, such as for example the daily traffic on a network. We there-
fore prefer to focus our data collection on traces collected “in the wild”.

• Completeness in labeling: our aim is to provide a labeled data set. More
specifically, we want all the security accidents to be labeled. This also
means that together with the raw data that will form our data set, we
need to provide evidence of the malicious or benign content of the traffic.

• Correctness in labeling: besides being complete, we want the data set to be
correct. This means that our knowledge of the security events in the data
set has to be certain.

• Sufficient trace size: we require our data set to have a sufficiently large
size, meaning that we aim for collecting a sufficient number of security
events.

• Achievable in reasonable labeling time: finally, we aim for a solution that
allows us to build a labeled data set in a reasonable time.

5.2 Infrastructure for data collection

While dealing with the creation of a flow-based data set, the choice of a proper
data collection setup is critical, since it has impact on the size of the resulting
data set and, moreover, on its quality.

In this section, we will discuss two key-topics that led our decisions on
the final data collection set-up: measurement scales and flow collection location.
Sections 5.2.1 and 5.2.2 will describe the impact of the measurement scale and
the flow collection location on the data set requirements that we outlined in
Section 5.1. In Section 5.2.3, we discuss the results of our analysis. Finally,
Section 5.2.4 will describe our experimental setup.



5.2 Infrastructure for data collection 63

5.2.1 Measurement scale

Flows can be collected at different measurement scales. With measurement
scale, we mean the number of hosts involved in the measurement, and, as a
consequence, the quantity of traffic that we should analyze and label. In our
case, we outline three measurement scales: network level, subnetwork level and
host level.

The network level corresponds to monitoring traffic from the entire Univer-
sity of Twente (UT) network. As described in Chapter 4, the UT network has a
/16 address space and it is connected to the Internet by means of a 10 Gbps op-
tical connection with an average load of around 650 Mbps and peaks of around
1.1 Gbps. Several hundred million flow records are exported per day [136].
Traces collected on this network are for sure realistic, since they describe the
daily UT network usage. However, we cannot accomplish the goals of com-
pleteness in labeling within reasonable time, due to the quantity of data to be
analyzed. Labeling network-wide traces therefore suffers from scalability is-
sues.

Let us now consider the subnetwork level. We analyze a small subnetwork
that is primarily used by our team for research purposes. Due to the limited
number of users, we assumed it would be easy to distinguish trusted IP ad-
dresses from unknown ones, leaving out only a small fraction of suspicious
traffic to be further analyzed. However, our findings show that more than 60%
of the connections cannot easily be categorized as malicious or benign. Collect-
ing on a small subnetwork ensures us to have a realistic data set, but, as in the
case of the network level, it is neither complete nor achievable in a reasonable
time.

A different setup, and the one that we finally chose, is based on monitoring
at host level. We consider a single host with enhanced logging specifically tuned
to track malicious activities, e.g., a honeypot. A honeypot can be defined as
an “environment where vulnerabilities have been deliberately introduced to
observe attacks and intrusions” [117]. In this case, the trace size is smaller and,
consequently, the labeling is time limited. An everyday service setup ensures
the traffic to be realistic. Most importantly, the access to the logs ensures us
enough additional information to achieve both completeness and correctness
in labeling. In the following, we will refer to the honeypot as the monitoring
point.



64 5 Manual ground truth generation

5.2.2 Flow collection location

We have different options for the flow collection location. A possibility is to
collect the flows generated by a Netflow-enabled router, in our case the UT
one. However, decoupling the flow creation from the log location introduces
errors in measurements. Examples are non-uniform timing delays and split
TCP sessions. We address these issues below.

A timing delay is the time skew between the moment a flow record is cre-
ated in the router cache and the moment the software on the honeypot will
create a log entry for the suspicious traffic. In an ideal situation, the timestamp
of the flow record and the one of the log are identical. However, a timing delay
is introduced due to network synchronization issues or the time the honey-
pot needs to process the traffic and to determine that an intrusion occurred. If
the honeypot relies on complex software, such as for example Nepenthes [6],
we experienced non-uniform timing delays that made the correlation between
flows and logs impossible.

A split TCP session occurs when a TCP connection has been divided in
several flow records, due to the active timeout on the Netflow router. In this
situation, the first step in order to associate a security event to the flows that
cause it is to group flow records into TCP sessions, on the basis of the 5-tuple
flow definition (as in Section 2.1.1). However, a 5-tuple does not necessarily
specify a TCP connection in a unique manner. It might happen, indeed, that the
same 5-tuple can be reused in different TCP sessions, even within a short time
interval between different sessions. The problem is even more troublesome
in a security context, in which an attacker can deliberately bind its traffic to a
certain 5-tuple by forging the attack packets. The issue that arises from this
observation is how we can regroup TCP sessions in a reliable manner. A first
possibility appears in Fioreze [51]. The author proposes to distinguish different
TCP sessions based on the time gap between the end time of a flow record and
the start time of the next one. If two flow records are sufficiently distant in time,
we can assume that a new TCP session has started. However, this method does
not ensure that we can recombine the TCP sessions without introducing errors,
namely without merging unrelated TCP sessions. A second possibility would
be to base the TCP session merging on the TCP flag information. A flow record
containing a FIN flag would in this case signal the end of a session. However,
this information, although useful, is not always exported, as it happens to be
the case for our Netflow router. We conclude therefore that errors in the flow
records merging would affect directly on the quality of the data set, since we
could not ensure a proper matching between the logs and the flows.



5.2 Infrastructure for data collection 65

A data set built in presence of timing delays and merged TCP sessions
would have a serious lack in completeness and correctness. Another possibil-
ity is therefore to dump the traffic reaching the monitoring point and to create
the flows off-line after the data collection is completed. This decision allows to
have complete control over the flow-creation process, overcoming the problem
of the session splitting and minimizing the delay between the flow creation
and the event logging.

In this subsection, we analyzed several methods for collecting the flow data
we need for a labeled data set. We pointed out, in particular, the disadvantages
of decoupling the flow creation from the log location and we concluded that,
in our case, it is advisable to dump the traffic to and from the monitoring point
and to create the flows off-line.

5.2.3 Discussion

We will now summarize the methods we studied for the data set collection in
light of the data set requirements (Section 5.1.3).

Requirements
Realistic Labeling Labeling Trace Labeling

completeness Correctness size time

University
Network

X X

University
Subnet

X X

Honeypot
router flows

X X X

Honeypot
off-line flows

X X X X X

Table 5.2: Data set collection.

Table 5.2 provides an overview of the presented approaches and their ca-
pability of satisfying the requirements in Section 5.1. Please note that, since
monitoring the university network or a subnetwork does not scale, we did not
explore further the options of router/off-line flow creation. All our approaches
ensure the trace to be realistic. Monitoring the UT network or a subnetwork
would also provide sufficiently large traces. After we measured the traffic



66 5 Manual ground truth generation

reaching the monitoring point, we can say that also in this case this require-
ment is met. Regarding completeness and correctness, large network traces
reduce the trust we can have on the labeled data set. The honeypot approach
is more reliable since it offers additional logging information, but in this case,
the flow collection/creation is crucial. As previously discussed in this section,
relying on external flow sources can introduce measurement errors. Creating
the flows off-line, on the other hand, allows to have flows that better match the
needs of a labeled data set. Finally, large infrastructures suffer from scalability
in labeling time, while the honeypot setup overcomes this problem.

From this section, we can conclude that monitoring a single host with en-
hanced logging capabilities is a promising setup for the creation of flow-based
data sets.

5.2.4 Experimental setup

The honeypot was installed on a virtual machine running on Citrix XenServer 5
[20]. The decision to run a virtualized host is due to the flexibility to install, con-
figure and recover the virtual machine in case it is compromised. In addition,
a compromised virtual machine can be saved for further analysis. Diverse sce-
narios are possible, in terms of number of virtual machines, operating systems
and software. Our experimental setup consisted of a single virtual machine,
on which we installed a Linux distribution (Debian Etch 4.0). In order to keep
the setup simple, controllable and realistic, we decided not to rely on honeypot
software, but to configure the host ourselves. The monitoring point behaves,
therefore, as a simple Linux server. In particular, the following services have
been installed:

• SSH: Beside the traditional service logs, the OpenSSH service [112], run-
ning on Debian, has been patched in order to log sessions: for each login,
the transcript (user typed commands) and the timing of the session have
been recorded. This patch is particularly important to track active hack-
ing activities.

• Apache web server: a simple webpage with a login form has been de-
ployed. We relied on the service logging capabilities for checking the
content of the incoming HTTP connections.

• FTP: the chosen service was proftp [118]. As for HTTP, we relied on the
FTP logs for monitoring attempted and successful connections.



5.3 Data processing and labeling 67

Figure 5.1: From raw data (packets and logs) to the labeled data set.

Along with the service logs, we decided to dump all the traffic that reached
the honeypot during our observation period. The virtual machine ran for 6
days, from Tuesday, September 23, 2008, 12:40 to Monday, September 19, 2008,
22:40. The monitoring window consists of both working days and weekend
days. The monitoring point was hosted in the UT network and directly con-
nected to the Internet. The data collection resulted in a 24 GB dump file con-
taining 155.2 million packets.

5.3 Data processing and labeling

The labeling process enriches the data trace with information about (i) the type
and structure of the malicious traffic, (ii) dependencies among different iso-
lated malicious activities. The latter is particularly important for a flow-based
data set where, by design, no further detail on the content of the communica-
tion is available to the end user. In this section, we research how it is possible
to formalize and structure the information collected at the monitoring point.

Figure 5.1 gives an overview on the data processing and labeling. As a
first step, shown in the left part of the figure, the collected traffic is converted
into flows. In addition, the data extracted from the diverse log files are con-
verted into a common format, called “events”, that simplifies the processing
steps that will follow. The resulting flow records and events feed the alert gen-
eration/correlation process. At this stage, we rely also on information coming
from the typescript of the SSH sessions on the monitoring point, that is, the
recording of all the command the hackers executed during the observation pe-
riod. Finally, a post-processing step generates additional information, namely
the so-called cluster alerts and the causality information. This step groups
alerts in order to describe more complex security events. The different steps
are explained in the following Sections 5.3.1 through 5.3.4.



68 5 Manual ground truth generation

5.3.1 From packets to flows

The first step is the creation of flows from the traffic trace. In our data set, a
flow closely follows the Netflow version 5 [19] definition and has the following
form:

F = (IPsrc, IPdst, Psrc, Pdst, P ckts,Octs, Tstart, Tend, F lags, Prot)

, where the unidirectional communication is defined by the source and desti-
nation IP addresses IPsrc and IPdst, the employed ports Psrc and Pdst (in case
of UDP/TCP traffic), and the level 3 protocol type Prot. The fields Pckts and
Octs give the total number of packets and octets, respectively, in the data ex-
change; the TCP header flags are stored as a binary OR of the flags in all the
packets of the flow (field Flags); the start and end time of the flow are given in
Tstart, respectively, Tend in millisecond resolution. The flow creation has been
performed using softflowd [133].

5.3.2 From log files to log events

Information about attacks against the monitoring point can be extracted from
the log files of the services we were monitoring. In order to simplify the alert
generation process, the relevant data found in the various log files are con-
verted into log events. A log event consists of the following information:

L = (T, IPsrc, IPdst, Psrc, Pdst, Descr,Auto, Succ, Corr)

, where T gives the timestamp of the attack (as found in the logs), IPsrc and
Psrc give the IP address and used port (if available) of the attacker, and IPdst
and Pdst give the attacked IP address and port number. This distinction is
needed because during the observation period, the monitoring point has been
both the target and the source of attacks. In addition, a deeper manual analysis
of the log files reveals whether an attack was automated or manual and suc-
ceeded or failed (flags Auto and Succ, respectively). The field Descr allows us
to enrich the data set with additional information retrieved from the log files.
An example is the payload content of an HTTP request:

"GET /cacti/include/config_settings.php?".

The field Corr is a utility field and later used by the alert generation process to
indicate if the log event has been already processed.



5.3 Data processing and labeling 69

5.3.3 Alert generation and correlation

Goal of this step is to generate so-called alerts and to correlate each generated
alert to one or more flows. An alert describes a security incident and is repre-
sented by the following tuple:

A = (T,Descr,Auto, Succ, Serv, Type).

The fields T , Descr, Auto, Succ are defined as for the log events (see Sec-
tion 5.3.2). The field Serv gives the service addressed by the security incident,
for example SSH or HTTP. The Type field describes the type of the incident,
that is if the event is a simple connection or represents a group of connections.
Note that, in this context, we refer to any packet exchange to and from the
monitoring point as a “connection”, without implying that an actual TCP con-
nection has been established. The alert generation process consists of three
steps that are explained in the following.

Alerts from log events

For attacks toward the monitoring point, alerts can be directly generated from
the log events. The fields T , Descr, Auto, Succ of an alert record are set to
the values of the corresponding fields of the log event. The Serv field is set
accordingly to the destination port field of the log event, for example Serv =
SSH if Pdst = 22. In this phase of the labeling, the Type field is always set to the
value CONN, indicating that the alert describes a malicious connection attempt.

To correlate an alert with a flow, we have to find the flow that corresponds
to the log event from which the alert has been generated. As it will be explained
below, this is not a trivial task since the timing information extracted from a
log file may not be aligned with the flow one. In addition, we would like to
correlate not only the incoming flow (as seen from the monitoring point) to the
alert but also the response flow of the honeypot.

We use the flows as starting point for the alert generation and correlation.
This avoids that a flow is correlated to more than one alert. The resulting pro-
cedure for a service s is shown in Algorithm 1. As a first step, a best matching
response flow is selected for each flow of the considered service (lines 3-7). The
matching is made based on the flow attributes. If there are more than one can-
didate flows, the closest in (future) time is chosen. It is possible, nevertheless,
that such a flow does not exist, for example in the case in which the target was a
closed destination port. Since the flow tuple source/destination address/port



70 5 Manual ground truth generation

may appear multiple times in the data set, as explained in Section 5.2.2, the pa-
rameter δ ensures that an incoming flow is not correlated with a response too
late in time. We found that values of δ from 1 to 10 seconds are possible.

Algorithm 1 Correlation procedure.
1: procedure ProcessFlowsForService (s : service)
2: for all Incoming flows F1 for the service s do
3: Retrieve matching response Flow F2 such as
4: F2.IPsrc = F1.IPdst ∧ F2.IPdst = F1.IPsrc ∧
5: F2.Psrc = F1.Pdst ∧ F2.Pdst = F1.Psrc ∧
6: F1.Tstart ≤ F2.Tstart ≤ F1.Tstart + δ
7: with smallest F2.Tstart − F1.Tstart ;
8: Retrieve a matching log event L such as
9: L.IPsrc = F1.IPsrc ∧ L.IPdst = F1.IPdst ∧

10: L.Psrc = F1.Pdst ∧ L.Pdst = F1.Psrc ∧
11: F1.Tstart ≤ L.T ≤ F1.Tend ∧ not L.Corr
12: with smallest L.T − F1.Tstart ;
13: if L exists then
14: Create alert A = (L.T, L.Descr, L.Auto, L.Succ, s,CONN).
15: Correlate F1 to A ;
16: if F2 exists then
17: Correlate F2 to A ; L.Corr ← true ;
18: end if
19: end if
20: end for

After searching for a response flow, the algorithm proceeds with retrieving
the best matching log event (lines 8-12). The log event must match the flow
characteristics. The timing constraint in this case forces the log event to be in
the interval between the beginning and the end of the flow. Moreover, since
log files do not provide us with millisecond precision and multiple alerts can
be generated by the same host in the same second, we require the matching log
event to not have been consumed before (line 11). If the matching event exists,
the algorithm will create the alert and correlate it with the flow and, if possible,
with the response flow (lines 13-18). Finally, the log event will be marked as
consumed (line 17).



5.3 Data processing and labeling 71

Alerts for outgoing attacks

Some of the incoming attacks against the SSH service were successful. Conse-
quently, the attacker sometimes used the monitoring point itself to launch SSH
scans and dictionary attacks against other machines. To generate alerts for
these outgoing attacks, the analysis of the SSH sessions typescripts allows us
to reconstruct the times and the destinations of the different attacks launched
from the honeypot. Similarly to the previous step, this information is used to
find the corresponding flows and to correlate them to alerts of type CONN.

Alerts for side effects

Several attacks to and from the monitoring point have caused non-malicious
network traffic that we consider as “side effects”. Most notably, SSH and FTP
connection attempts caused ICMP traffic and traffic to the auth/ident service
(port 113) of the attacker. Furthermore, one attacker installed an IRC proxy on
the honeypot. For these flows, we have created alerts of type SIDE EFFECT
with Serv = ICMP, respectively, Serv = auth or Serv = IRC.

5.3.4 Cluster alerts and causality information

The alerts described in the previous section represent single security incidents
and are directly correlated with one or more flows. However, we argue that
this is not the only valuable information that a flow based data set can in-
clude. For example, the current alert-flow mapping does not provide infor-
mation about the relations between sets of alerts. To overcome this issue, we
generate so-called cluster alerts and causality information to describe relation-
ships between alerts. Figure 5.2 shows an example of how such information
is introduced in the data set. The example can represent, for example, the re-
lation between a successful SSH session on the monitoring point and an SSH
scan launched during such session. The successful SSH connection causes an
SSH scan to be launched. The scan can be seen as a group of SSH connections
towards target hosts.

Cluster alerts are used to label logical groups of alerts. For example, in the
case of an SSH scan consisting of a certain number of connection attempts, we
create basic alerts of type CONN for each connection, plus one cluster alert of
type SCAN for the entire scan operation. More formally, a basic alert A belongs
to a scan alert C, if (i) the alert A has the same source IP and type as the other
alerts in the cluster, and (ii) the alert is not later than γ seconds after the latest



72 5 Manual ground truth generation

Flow FlowFlowFlowFlow

Alert

Cluster alert

Alert AlertAlertAlert

Alert

cluster 

relationcausality relation

Flow

Figure 5.2: Clustering and causality information.

alert in the cluster. In our case we set γ = 5 seconds, but depending on the
nature of the attack other values might be also suitable.

As a final step, we manually add causality information. In the current
setup, that means that we have created (i) links between the alert represent-
ing an attacker’s successful log-in attempt into the honeypot via SSH and all
alerts raised by the attacker during that SSH session, and (ii) links between the
alerts of the ICMP and auth/ident flows and the alerts of the SSH and FTP
flows that caused them.

Our data set has been implemented in a MySQL database. The structure
of the database reflects the alert and flow structure and the relations between
these categories. Figure 5.3 shows the used database schema.

5.3.5 Semi-automatic labeling and manual steps

The correlation procedure described in the previous subsections entails both
semi-automatic and manual steps.

Flows are created from the traffic dump in an automatic manner using
softflowd. The processing of the log files, on the other hand, is not as straight-
forward as the flow creation. We process the log files using shell scripts to ex-
tract the information we are interested in. However, such scripts needs to be
specifically written according to the format of the log files, the information we
want to retrieve and the process we are monitoring. Moreover, deciding if an
attack was manual or automated is an entirely manual process. We proposed
in Section 5.3.3 an algorithm to correlate flows and security events. Such an
algorithm allows us to process the majority of the events in the data sets, and
it is suitable for the categories of attacks we observed. However, the algorithm
would need to be manually tuned to correlate other types of attacks. An ex-



5.4 The labeled data set 73

id
description

ALERT_TYPES
id
automated
succeeded
description
timestamp
type
service

ALERTS

id
src_ip
dst_ip
packets
octets
start_time
start_msec
end_time
end_msec
src_port
dst_port
tcp_flag
prot

NETFLOWS

flowid
alertid

NETFLOW_ALERTS

parent
child

ALERTS_CLUSTERING

parent
child

ALERTS_CAUSALITY

id
description

SERVICES

Figure 5.3: Database structure.

ample is the labeling of vertical scans, which target several ports on the same
victim. These attacks cannot be handled in the current version since the algo-
rithm is parameterized on a specific service. The SSH typescripts have been
analyzed in a completely manual manner, since attackers try to obfuscate their
actions using different commands and command names. Finally, clustering
and causality information has been introduced manually.

5.4 The labeled data set

The processing of the dumped data and logs, collected over a period of 6 days,
resulted in 14.2M flows and 7.6M alerts. Section 5.4.1 will describe the data set
breakdown at flows and alerts level, and in Section 5.4.2 we will discuss the
main characteristic of the data set traffic.

5.4.1 Flow and alert breakdown

Figure 5.4(a) and 5.4(b) present a breakdown of the flows according to the level
3 protocols and the active services, respectively.



74 5 Manual ground truth generation

At network level, the collected data set presents a subdivision in only three
IP protocols: ICMP, TCP and UDP. The majority of the flows have protocol
TCP (almost 99.9% of the flows). A second slice of the data set consists of ICMP
traffic (0.1% of the flows). Finally, only a negligible fraction is due to UDP
traffic. The level 3 protocol breakdown is consistent with the active services
breakdown, shown in Figure 5.4(b). The most active service in the data set has
been SSH, followed on the distance by auth/ident.

ICMP

TCP

UDP

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08

583

14151511

18038

number of flows

(a)

SSH

FTP

HTTP

AUTH/IDENT

IRC

OTHERS

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08

18970

7383

191339

9798

13

13942629

number of flows

(b)

Figure 5.4: Flow breakdown: the level 3 protocol (a) and the service traffic (b).

Figures 5.5(a) and 5.5(b) show the alert breakdown according to malicious
connections and scans on the most active services. SSH and auth/ident
are the only services for which the monitoring point has been both a target
and a source. The host received several thousand SSH connections and it has
been responsible of millions of outgoing ones. It has been the target of exten-
sive auth/ident requests, triggered by the scanning activity. The monitoring
point itself produced only a negligible number of outgoing connections to port
113, due to the FTP server. As shown in Figure 5.5(b), the SSH alerts can be
grouped into 45 scans, 10 incoming and 35 targeting remote destinations. We
also have been the target of 4 HTTP scans. None of the FTP, auth/ident or
irc alerts can be clustered into scans.

5.4.2 Discussion on the data set

This section discusses the results of the correlation process, pointing out the
characteristic of both the labeled and unlabeled traffic. Our correlation process



5.4 The labeled data set 75

SSH  IN

SSH OUT

FTP

HTTP

AUTH/IDENT IN

AUTH/IDENT OUT

IRC OUT

ICMP IN

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08

16382

3692

6

95664

5317

6

7591869

8756

number of alerts

(a)

number of alerts

SSH IN

SSH OUT

HTTP

0 10 20 30 40

4

35

10

(b)

Figure 5.5: Alert repartition for basic (a) and cluster (b) types.

succeeded in labeling more than 98.5% of the flows and almost all of the alerts
(99.99%).

Malicious traffic

All the labeled traffic is related to the monitored services. Since we did not
interfere in any way with the data collection process, i.e., we avoided any form
of attack injection and we did not advertise our infrastructure on hacker chats,
we can assume that the attacks present in the data set reflect the situation on
real networks.

The majority of the attacks targeted the SSH service and they can be divided
into two categories: the automated and the manual ones. The first ones are
well-known automated dictionary scans, where a program enumerates user-
names and passwords from large dictionary files. This attack is particularly
easy to observe at flow level, since it generates a new flow for each connection.
Attacks of the second type are manual connection attempts, in which the at-
tacker himself logs into the system and not a script. There are 28 of these in our
trace and 20 of them succeeded.

The HTTP alerts labeled in our data set are automated attacks that try to
compromise the service by performing a scripted series of connections. These
scans are executed using tools like Nikto and Whisker, both easily available
online. Differently from the SSH connections, no manual HTTP attacks are
present, probably due to the very simple HTTP setup chosen.

Regarding the FTP traffic, the data set contains only 6 connections to this



76 5 Manual ground truth generation

service on our host, during which a FTP session has been opened and imme-
diately closed. Even if the connections did not have a malicious content, this
behavior could be part of a reconnaissance performed by an attacker gathering
information about the system.

Side-effect traffic

Part of the traffic in our data set is the side effect of attacks, but it cannot be con-
sidered by itself malicious. auth/ident, ICMP and irc traffic fall into this
category. The scanning activities have been responsible for the majority of the
flows to and from port 113. The service is supposed, indeed, to retrieve addi-
tional information about the source of a TCP connection. Regarding the ICMP
traffic, more than 120,000 incoming packets have type time exceeded and desti-
nation unreachable and come from networks that the monitoring point scanned.

The analysis of our host showed that a hacker installed an IRC proxy that
received chat messages from several channels. It appears that no message has
been sent from the monitoring point and that the channels have not been used
for any malicious activity.

Unknown traffic and uncorrelated alerts

For a small fraction of the data set, we cannot establish the malicious/benign
nature of the traffic. This traffic consists of three main components: (i) SSH
connections for which it has not been possible to find a matching alert, (ii) het-
erogeneous traffic, containing all the flows having as destination a closed port
on our host, and (iii) some non-malicious connections to the HTTP and vnc
services. The vnc service was accessible because of the XEN virtualization
software running on the monitoring point. Strangely, no attacker identified
this service and tried to compromise it by using known vulnerabilities or per-
forming a brute-force dictionary attack on the password. The vnc flows in the
data set are originating from two hosts which contacted the service but did not
complete the connection.

Regarding the alerts, for few of them (0.01%) no matching traffic has been
found. This makes us aware that during the collection phase some packets that
reached the monitoring point may not have been recorded. A possible expla-
nation is that the OS kernel dropped some of the packets during the moment
of higher network activity, such as the scanning activities.



5.5 Lesson learned and conclusions 77

5.5 Lesson learned and conclusions

This chapter dealt with the topic of manually creating a flow-based labeled
data set. A labeled data set provides the ground-truth knowledge for valida-
tion and evaluation of IDSs. In the specific case of flow-based IDSs, as far as
we know, such a labeled data set did not exist prior to our research.

In Section 5.1, we motivated the need and the importance of ground truth
and describe the requirements we put on the data set. In Section 5.2, we re-
ported on our operational experience in collecting meaningful data as basis
for our data set: in particular, we described the decision process that lead to
a honeypot-based setup in relation to both measurement scale and flow col-
lection location. After the data collection, Section 5.3 described the labeling
process. We proposed a semi-automatic labeling procedure that allows to pro-
cess the majority of the collected flows and correlate them with the relevant
security event. Finally, Section 5.4 presented the final data set.

The main contribution of this chapter is to present the first labeled data set
for flow-based intrusion detection. The data set is available in anonymized
form at the address: http://traces.simpleweb.org.

While approaching the problem of creating a labeled data set, we learned
that the choice of the proper data collection infrastructure is a crucial point. It
has indeed impact not only on the feasibility of the labeling, but also on the
trustworthiness of the result. We studied several data collection infrastruc-
tures, enlightening strengths and drawbacks. We conclude that, in the case of
flow-based data sets, the most promising measurement setup is monitoring a
single host with enhanced logging capabilities. In the specific context of this
experiment, the host was a honeypot. The information collected permitted us
to create a database of flows and security events (alerts).

However, we are aware of the limitation that our approach entails. In par-
ticular, the presented trace mainly consists of malicious traffic. For IDS eval-
uation, this means that our data set allows to detect false negatives (missed
events) but not false positives (benign traffic classified as malicious). A pos-
sible extension is therefore a monitor setup that would allow to capture also
benign traffic. An example would be a server that is daily accessed by benign
users. Monitoring such a server would result in a trace with a more balanced
content of malicious and normal traffic. We believe that an approach similar to
the one we presented in this chapter will be useful also in this scenario.

We also described a semi-automated correlation process that matches flows
with security events and, in addition, reflects the causality relations between
the security events themselves. The results of the correlation process show that



78 5 Manual ground truth generation

we have been able to label more than 98% of the flows in the trace. However,
the correlation process proves that, although we limited our measurements to a
single host, labeling remains a complex task that requires human intervention.
Only some of the steps in the correlation process can be partially automated
and deep domain knowledge is needed. In Chapter 6 we will approach the
ground-truth problem from a modeling prospective, proposing a procedure
for creating labeled data set in an automatic manner.



CHAPTER 6

Automatic ground truth generation

In Chapter 5 we showed that manual creation of a flow-based data set for
which the ground truth is known is a time and resource-consuming task. More-
over, such a data set is the result of the trade-off between realism on one side,
and correctness and completeness on the other. Therefore, the data set we pro-
posed, even though it is a promising beginning, still presents limitations, the
main one being the fact that it mainly consists of malicious traffic.

To overcome these problems, the goal of this chapter is to develop models
that can be used to generate ground truth in an automatic manner. We present
our general approach in Section 6.1. To develop these models, we will first ana-
lyze the traffic flowing over the network in Section 6.2. This analysis will allow
us to develop specific models in Section 6.3. The outcome of our models will
then be validated against real traffic in Section 6.4. In Section 6.5 we present a
few remarks on the generality of the proposed models. Finally, in Section 6.6
we summarize our findings.

6.1 General approach

As stated above, the goal of the research presented in this chapter is to automat-
ically generate ground truth for flow-based intrusion detection. In Chapter 4,
we showed that time series derived by flow information can be a powerful tool
for characterizing attacks. Our proposal is therefore to enrich such time series
with ground-truth information. More specifically, we refine our goal by aim-
ing to synthetically generate time series of flows, packets and bytes for which the
ground truth is known.

Our approach is based on the following cornerstones:

• We advocate the use of models to describe the significant characteris-
tics of flow, packet and byte time series and their evolution over time.



80 6 Automatic ground truth generation

In order to do that, we need of a modeling framework that (i) explic-
itly takes into account time, and (ii) can be used in a generative manner.
From the literature, a promising approach is provided by Hidden Markov
Models (HMMs). HMMs are effective in modeling sequential data [17].
Introduced in the early 1970s [10], they have been successfully applied
to different scientific fields. Examples are biological sequence analysis
[42], speech recognition [122] and pattern recognition [50]. HMMs can be
trained on real data and their main characteristic is the ability to capture
the temporal behavior of the observed processes. Moreover, they can be
used for generation purposes. We describe the background on HMMs in
Appendix A.

• Once we are able to generate time series, we need to enrich them with
ground-truth information. To achieve this, we need to know, at each in-
stant of time in our time series, if an attack is ongoing or if the network is
safe. We propose, therefore, to model malicious and benign traffic sepa-
rately. This allows us to study and model in detail malicious and normal
traffic behavior. Moreover, we assume the time series for an entire net-
work to be the combined result of benign and malicious network activi-
ties. We then generate malicious and benign SSH traffic separately, and
combine them at a later stage into a meaningful time series for which the
ground truth is known.

In this chapter, we focus on SSH traffic, which will be in the remaining part
of this thesis our running example. As pointed out in Chapter 4, the SSH pro-
tocol is regularly under attack, and therefore it allows us to collect a suitable
amount of attack instances on which we can base our modeling. However, we
will argue later that our approach can be adapted to other type of traffic, in
Section 6.5.

6.2 Flow-based characterization of SSH traffic

Our approach aims to model time series for SSH attack and normal traffic.
To do that, the first step is to gain knowledge about what such a traffic looks
like “in the wild”. In this section, we therefore analyze and characterize SSH
time series derived by real flow measurements. First, we describe how an SSH
dictionary attack looks like if only flow information is available. Second, we
provide an example of a network time series, including both malicious and
benign traffic. Here, and in Chapter 7, we define benign traffic relatively to the



6.2 Flow-based characterization of SSH traffic 81

attack traffic. In doing so, we defined as normal all the traffic that has not been
directly generated or received by an attacker.

6.2.1 SSH dictionary attack

SSH dictionary attack is one of the most common threats in cyber space [125].
The attack behavior that we will describe is typical for such attack. While mon-
itoring the University of Twente (UT) network, we observe on average two SSH
dictionary attacks with these characteristics per day. In this section, we present,
as an example of such class of attacks, the traffic generated by a host known
to have performed a SSH dictionary attack against the UT network. The at-
tack took place in the early afternoon of July 16, 2008 and lasted approximately
40 minutes. During this interval, approximately 8300 distinct university hosts
have been scanned. The attack generated a volume of traffic of approximately
32400 flows, 279000 packets and 30.5MB.

Figure 6.1: Overview of an SSH dictionary attack at flow level .

As explained in Chapter 4, we study the evolution of the attack by con-
sidering the time series of flows, packets as well as bytes that it generates. In
Chapter 4, we presented such time series at a time resolution of 600 seconds.
For the analysis in Chapter 4, this resolution provided a good overview of the



82 6 Automatic ground truth generation

overall traffic behavior. However, for the aim of modeling, such a coarse time
resolution can potentially introduce artifacts, due to the data aggregation into
the time bins. In this chapter, we propose to study traffic time series at a finer
granularity, which provide us with detailed information on the traffic evolu-
tion. We therefore present time series at 1 second resolution.

Figure 6.1 shows, for the attacker, the evolution over time of (i) the number
of flows created per second, (ii) the number of packets transferred per second,
and (iii) the number of bytes transferred per second. Each value in the time
series accounts for both the traffic generated by the attacker and the traffic that
he receives from the victims. During the attack, the intensity of the flow, packet
and byte time series vary. In the flow time series, we can see that in about the
first 1000 seconds the attack intensity grows, reaching a peak of 450 flows/s.
After that, the number of flows per second drops abruptly and roughly stabi-
lizes around 100 flows/s. Finally, the attack activity slowly fades off in the last
500 seconds.

The packet and byte time series both show a similar trend, with little traffic
exchanged during the first 1000 seconds of the attack, then a high peak fol-
lowed by a roughly stable traffic intensity of around 100 packets/s and 150
bytes/s. Finally, the attack slowly dies. Moreover, after the first 1000 seconds,
the shown trend closely resembles the one of the flow time series. This behav-
ior suggests that during an SSH dictionary attack, the flow, packet and byte
time series are mutually correlated. In particular, the time series of packets
and bytes appear to be strongly correlated during the entire attack, while the
flow time series only partially follows the packet and byte trend.

A different view on the attacks is given by Figure 6.2. Each mark in the
graph represents either a malicious SSH connection from the attacker to a vic-
tim or the answering connection from the victim back to the attacker. The y-
axis gives the 65,535 possible destination addresses in the university network.
We identify three attack phases. During the scanning phase (first 1000 seconds),
the attacker performs a sequential SSH scan spanning over the entire network
address space. In this phase, the attacker gathers information on which hosts
vulnerable SSH services run. Only few victims respond to the attack. Once this
phase is completed, the attacker initiates a brute-force user/password guessing
attack based on the information stored in the attacker’s dictionary file (brute-
force phase). In this phase, only a small subset of the hosts in the network is
involved, those who responded to the SSH connection attempt. This phase cor-
responds to the second block of 1000 seconds and it is characterized by a high
interaction between the attacker and the victims. Finally, after about 2000 sec-
onds since the beginning of the attack, the brute-force phase ends. Neverthe-



6.2 Flow-based characterization of SSH traffic 83

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0  500  1000  1500  2000  2500  3000

IP

Time (s)

FROM ATTACKER
TO ATTACKER

Figure 6.2: Connection pattern between an attacker and the victims .

less, the time series in Figure 6.1 show that after this moment in time there is
still traffic. Form Figure 6.2 it is now evident that the residual traffic is due to a
small number of compromised hosts that communicate with the attacker. We
refer to this final phase as the die-off phase.

Although the three attack phases are clearly visible in Figure 6.2, they are
not so clearly identifiable from the flow, packet and byte time series shown in
Figure 6.1. However, the fact that the three time series are correlated allows us
to derive a more suitable measure. Figure 6.3 shows the evolution over time of
the packets per flow, again at 1 second resolution. Using this measure, the three
phases are clearly visible. The scanning phase is characterized by only a few
packets per flow, on average between 1 and 1.5. These values are consistent
with a scenario in which several three-way handshakes are initiated but only
few are completed. When the brute-force phase starts, the number of packets
per flow has a sharp rise: from 1.5 to an average of about 11. During this phase,
several user/password combinations are tested against the same victim. This
explains why the attacker produces a higher number of packets per flow. Fi-
nally, the die-off phase sees again only few packets per flow. In the majority
of the cases, we observe only one packet per flow. Such traffic may be due



84 6 Automatic ground truth generation

    0

    2

    4

    6

    8

    10

    12

    14

    16

 0  500  1000  1500  2000  2500  3000

pp
f

Time (s)

    0

    1

    2

    3

    4

 400  450  500  550  600

Figure 6.3: Packets per flow time series during a scan

to SSH keepalive server options, and it also tell us that the attacker does not
properly terminate the SSH sessions (we do not observe any traffic from the
attacker side). The variation of packets per flow over time therefore seems to
be a key characteristic of the behavior of an SSH dictionary attack. It moreover
shows that the flow, packet and byte time series still carry enough information
to characterize the attack. Finally, in Figure 6.3, we also show that, at a deeper
analysis, the time series show that the activity pattern is not constant in time:
each second of activity is often followed by one or more seconds of inactivity.
An example of this phenomenon, which will become important when model-
ing the attack, is shown in the subplot in Figure 6.3.

6.2.2 An SSH time series

We now consider a more general case, namely an SSH time series, consisting
of both benign and malicious traffic. Figure 6.4 presents the flow, packet and
byte time series at 1 second resolution for 24 hours of SSH traffic. The trace has
been collected on the UT network, and it contains one SSH attack. The time
series show both normal and malicious SSH traffic. The time window during



6.3 The traffic models 85

the attack is depicted in black.
The normal traffic flow time series appears as a baseline of modest inten-

sity, ranging from a maximum of approximately 50 flows/s in the night to a
maximum of approximately 75 flows/s around midday. At a closer look, as
in the case of the SSH dictionary attack, also the normal time series appears
as a sequence of active and inactive time bins. The time series also shows
a moderate day/night pattern, with the day period between 8:00 and 16:00.
The packet and byte time series appear strongly correlated and present several
peaks during the observation period. These peaks are usually caused by file
transfers over SSH and do not correspond to any considerable variation in the
flow time series. Packets and bytes show therefore only a modest correlation
with the flow time series. In the case of the normal SSH traffic time series, we
cannot conclude that there exists a key metrics for describing the traffic evolu-
tion, opposed to the packets per flow time series for the SSH attack traffic (cf.
Figure 6.3). However, in order to generate meaningful time series, we should
properly model the correlations between flows, packets and bytes. We will
discuss the correlation values in Section 6.4.

Between 8:00 and 9:00, the University of Twente network has been the target
of a SSH dictionary attack, clearly noticeable as a peak in the flow time series.
The attack lasts 26 minutes and reaches an intensity of 360 flows/sec. Consid-
ering the time window in which the attack took place, we once again confirm
the observation in Chapter 4: we observe that an SSH dictionary attack has
only a minimal impact on the packet and byte time series. The amount of traf-
fic in both packet and byte time series is indeed comparable to a network that
is not under attack. In this specific case, therefore, the number of flows per
second is a suitable metric for detecting SSH dictionary attacks.

In the following section, we will describe how the flow-based characteriza-
tion that we presented in this section can be used to model SSH time series.

6.3 The traffic models

The aim of our models is to generate meaningful synthetic flow, packet and
byte time series, both in terms of SSH attack and normal traffic. In this sec-
tion, we describe the SSH traffic models we propose. We based our modeling
choices on the observations in Section 6.2. We aim to map key characteristics of
the attack and normal traffic, such as for example the phases of an SSH dictio-
nary attack, directly in our models. Sections 6.3.1 and 6.3.2 will introduce the
attack model and the normal traffic model, respectively.



86 6 Automatic ground truth generation

0 
100 
200 
300 
400 
500 

00:00 04:00 08:00 12:00 16:00 20:00 00:00

flo
ws

Time

Normal traffic
Attack traffic

0
400
800

1200
1600

00:00 04:00 08:00 12:00 16:00 20:00 00:00

pa
ck

et
s 

/ 1
03

Time

Normal traffic
Attack traffic

0
400
800

1200
1600
2000

00:00 04:00 08:00 12:00 16:00 20:00 00:00

 b
yt

es
 / 

10
6

Time

Normal traffic
Attack traffic

Figure 6.4: Example of an SSH network time series.

6.3.1 SSH dictionary attack traffic

This section introduces the Markov chain and the output probabilities for a
model describing the SSH dictionary attack that we described in Section 6.2.

The Markov chain

The SSH dictionary attack introduced in Section 6.2 consists of three phases: a
scanning phase, a brute-force phase and a die-off phase. Moreover, as shown in
the subplot of Figure 6.3, the time series appear to be constituted of interleaved
sequences of active and inactive time bins. We make use of these characteristics
to define a Discrete Time Markov Chain (DTMC) for our model. Our model
consists of the following seven states, which are shown in Figure 6.5, together
with the possible state transitions:

• the states Si, i = 1, 2, 3. In these states, the attacker is active and causes
network traffic;

• the states Ii, i = 1, 2, 3. In these states, the attacker is temporary inactive;



6.3 The traffic models 87

• the end state End.

The state S1 is the starting state, which denotes the beginning of the scan ac-
tivity. The states S1 and I1 model the scanning phase of the attack. For the
specific class of attacks introduced in Section 6.2, once the attack moves from
the scanning phase to the brute-force phase (states S2 and I2), it will not re-
turn to the scanning phase. This models the fact that, for the analyzed attack
type, the scan will be performed only once per attack. The die-off phase (states
S3 and I3), on the other hand, partially overlaps with the brute-force phase,
as shown by the fact that the states {S2, I2, S3} form a fully connected chain.
This decision is due to the fact that the die-off phase mainly consists of packets
flowing from the compromised hosts to the attacker. Since the die off phase
may be due to SSH keepalive packets, they can occur also before the brute-
force phase is completed. However, as it will be shown in Section 6.4.2, the
transition probabilities learned during the training will favor transitions in the
same phase. This is because it is only after the brute-force phase is concluded
that the die-off phase becomes manifest. Finally, attacks will have different du-
rations. We therefore model them by introducing the state End, that indicated
the end of an attack. Transitions to the End states have been observed from
each active state Si, thus reflecting the fact that some attacks stop after the scan
phase or that the die-off phase may not exist.

Scanning phase

S1start I1

Brute-force phase

S2 I2

Die-off phase

S3 I3

End

Figure 6.5: DTMC for SSH dictionary attack traffic.

The output probabilities

As noted previously in this section, we aim to reproduce meaningful flow,
packet and byte time series. Hence, at each transition, our model should out-



88 6 Automatic ground truth generation

put a triple, that we indicate with (F, P,B), with the values of flows, packets
and bytes for the latest time bin of the time series.

However, it is important to keep in mind that these three values are not
independent, as shown in Section 6.2. A possibility to generate correctly cor-
related values for the three time series would be to rely, for each state of the
model, on a joint output probability distribution PF,P,B . However, this solu-
tion proved to be not efficient once implemented, due to the overhead in han-
dling a triple-joint empirical distribution. In the following, we will present an
alternative approach that approximates the triple-joint probability distribution
PF,P,B by means of random variables indicating the number of flows F , the
number of packets per flow PPF and the number of bytes per packet BPP .
To each active state S1, S2 and S3 in our model, we assign the following empir-
ical distributions:

• an empirical probability distribution of the number of flows per time bin,
PF ;

• an empirical joint probability distribution of packets per flow (PPF ) and
bytes per packet (BPP ) per time bin, PPPF,BPP .

At each transition, values of F , PPF and BPP are generated according to
the empirical distributions associated to the current destination state. The
joint probability distribution PPPF,BPP ensures the strong correlation between
packets and bytes that we have observed in the data. Note that in the states I1,
I2 and I3 the attacker is by definition temporarily inactive. Therefore the proba-
bility distributions are such that P(F = 0) = 1 and P(PPF = 0, BPP = 0) = 1
and the triple (F = 0, PPF = 0, BPP = 0) is the only allowed output.

6.3.2 Normal SSH traffic

We will now describe the Markov chain and the output probabilities that define
the normal SSH traffic model. The normal SSH traffic model is more general
than the one we presented in Section 6.3.1 for the SSH dictionary attack. The
SSH attack model describes the traffic generated by a single attacker and its
victims. The normal traffic model, on the other hand, describes the legitimate
SSH traffic present on a network as a whole. This allows us to describe the
normal SSH traffic by means of a simple two-state Markov chain, which we
will describe in the following.



6.3 The traffic models 89

The Markov chain

As for the SSH dictionary traffic, also a normal traffic time series consists of a
sequence of active and inactive time bins. We model this behavior directly in
the state chain, as shown in Figure 6.6. The DTMC consists of two states:

• the state A, in which SSH traffic is present on the network (activity);

• the state I , in which no SSH traffic is present on the network (inactivity).

Astart I

Figure 6.6: DTMC for normal SSH traffic.

The stochastic process starts in state A, that models the presence of SSH traffic
activity. Since we consider a network as a process that is persistent in time, no
End state has been introduced in the model.

The output probabilities

Similarly to what has been done for the SSH dictionary attack model, also in
the case of the normal output probabilities, we propose an approach alterna-
tive to the triple-joint distribution PF,P,B . We rely also in this case on inter-
mediate measures such as the packets per flow PPF and the bytes per packet
BPP . However, differently from the attack model, we now ensure a correct
correlation between flow, packet and byte time series by means of two joint
distributions. The following distributions are therefore assigned to the state A:

• an empirical joint probability distribution of flows (F ) and packets per
flow (PPF ) per time bin, PF,PPF ;

• an empirical joint probability distribution of packets per flow and bytes
per packet (BPP ) per time bin, PPPF,BPP .

At each transition, a realization of the random variables F , PPF and BPP
is generated. In state I , the model outputs only the triple (F = 0, PPF =
0, BPP = 0).



90 6 Automatic ground truth generation

6.4 Model validation

We validate the proposed models by verifying that the synthetic time series
that we generate maintain the statistical characteristics of the original data sets.
This section describes our testing methodology and presents the experimental
results we obtained.

Data Set
Sec. 6.4.1

Trained Model
Sec. 6.4.2

Generation
Sec. 6.4.3

Experimental
results
Sec. 6.4.4

Composition
Sec. 6.4.5

Figure 6.7: Model validation structure.

Figure 6.7 provides a schematic representation of how this section is orga-
nized. In Section 6.4.1 we introduce the data set we use for validation. Each
data set, as we will explain in Section 6.4.1, contains SSH normal and attack
traffic. The validation proceeds accordingly to the following steps, as described
in Figure 6.7:

1. for each data set, we train an attack or normal HMM. We present the
trained models in Section 6.4.2;

2. each trained model is used to generate a set of synthetic time series. As
explained in Section 6.3, we aim to generate time series for flows, packets
and bytes. The generation procedure is described in Section 6.4.3;

3. the statistical properties of the synthetic time series are analyzed to check
if the models are able to approximate the original traffic. We describe
our testing methodology and provide our experimental results in Sec-
tion 6.4.4;



6.4 Model validation 91

4. finally, we provide an example of synthetic network time series, includ-
ing both normal and attack traffic. We describe how we create such a
time series in Section 6.4.5.

The aim of the validation is to verify whether the models introduce errors
in creating synthetic traffic. Such a situation could happen due to the stochastic
nature of our models. We therefore train and test each of our models separately.
Another reason for having separate training and testing is that several months
have passed between the collections of our data sets. We argue therefore that it
is possible, if not likely, that some of the statistical properties we consider have
changed over time.

6.4.1 Data sets

We evaluate our models on two data sets of SSH traffic collected at the Univer-
sity of Twente network. We refer to these data sets as Set 1 and Set 2. Each data
set spans over 8 consecutive days and contains benign traffic as well as several
SSH dictionary attacks of the type described in Section 6.2. The first data set
has been collected in the period July 13–20, 2008 and contains 13 attacks; the
second one in the period April 19–26, 2009 and contains 17 attacks. Table 6.1
presents an overview of the attacks in the studied data sets in terms of the av-
erage values of flows, packets and bytes per second. This initial analysis shows
that the average values of flows, packets and bytes over time have changed in
time. In Set 2, the attackers appear to produce on average more than twice the
amount of packets and bytes compared to Set 1. This suggests that, while the
attack mechanism stays the same, the attack intensities are likely to vary in the
course of time. A possible explanation can be found in the dictionary used to
perform the brute-force phase. By analyzing attack scripts on compromised
machines and honeypots, we observe that the dictionary changes over time,
including a longer list of user/password pairs. Similarly, Table 6.2 summaries
the main characteristics of the normal SSH traffic in the data sets. Differently
from the malicious traffic, the statistical characteristics of the normal traffic are
subdued to a smaller variation over time.

Data Set Attacks F/s P/s B/s
Set 1 (13-20 July 2008) 17 11.06 66.91 7337.33
Set 2 (19-26 April 2009) 13 15.80 150.52 19016.00

Table 6.1: Statistical characteristics of the SSH attack traffic in the collected data sets.



92 6 Automatic ground truth generation

Data Set F/s P/s B/s
Set 1 (13-20 July 2008) 3.28 2318.99 2031952.31
Set 2 (19-26 April 2009) 3.14 1909.16 1564403.71

Table 6.2: Statistical characteristics of the SSH normal traffic in the collected data sets.

6.4.2 The trained models

We present here the Markov chain for the attack traffic and the normal traf-
fic models as result of the training (see Section A.2). We also provide details
relatively to the empirical output probability distributions.

Figures 6.8(a) and 6.8(b) show the Markov chains for the attack traffic, af-
ter the training on Set 1 and Set 2, respectively. Both models favor transitions
within the same phase, as we see by looking at the transition probabilities.
However, note that there are some differences between the two chains. In par-
ticular, in Set 2 there is no transition between S1 and End, as well as I1 and S2.
This means that, in Set 2, such transition never occurs. Finally, for complete-
ness, we present additional information on the empirical distributions learned
from the attack training sets in Table 6.3. In Table 6.3, we indicate the scanning,
brute-force and die-off phases with the subscript .1, .2, .3, respectively. The
table confirms that the intensity of the attacks is likely to change over time, es-
pecially during the scanning phase (phase 1). The maximum number of flows
in this phase has indeed almost doubled from Set 1 to Set 2. However, we can
also observe that the values for PPF andBPP have a large similarity between
the two training sets. This confirms our intuition that, while the intensity of the
attack may change, the attack method remains the same.

Figure 6.9 shows the Markov chains for the normal traffic. In this case the
training on Set 1 and Set 2 results in the same chain, with similar transition
probabilities. This suggests that, even though several months have passed be-
tween the creation of the two data sets, the normal traffic characteristics are
likely to change only slightly over time. Such conclusion is supported also by
the measurements in Table 6.2 and in Table 6.4, where we presents the details of
the empirical distributions learned from the training sets in the case of normal
SSH traffic.

6.4.3 Time series generation

We define a synthetic time series as a sequence of observations that the models
output when a random path is taken. The path begins in the starting state of



6.4 Model validation 93

S1start I1 S2 I2 S3 I3

End

0.617 0.813 0.723 0.757 0.667 0.848
0.378

0.186

0.235

0.214

0.269

0.152

0.004

0.001

0.04

0.029

0.039
0.022

0.001

0.001
0.003

(a) Set 1

S1start I1 S2 I2 S3 I3

End

0.766 0.939 0.793 0.654 0.652 0.876
0.23

0.061

0.171

0.312

0.218

0.124

0.004 0.036

0.034

0.097
0.029

0.0004 0.004

(b) Set 2

Figure 6.8: Markov chain for the attack traffic models.

the models (S1 or A). The generation process can be summarized as follows.
Let us assume the model to be in state si:

1. at time t ∈ N, the model jumps from the current state si to the next state
sj according to the transition probabilities aij , j = 1, . . . n;

2. if sj is the End state, in the case of the attack model, or if we reach a
specified number of transitions, in the case of the normal model, the path
will be concluded and the trace ends. Regarding this step, it is important



94 6 Automatic ground truth generation

Astart I

0.757 0.718
0.243

0.282

(a) Set 1

Astart I

0.732 0.733
0.268

0.267

(b) Set 2

Figure 6.9: Markov chain for the normal traffic models.

Set 1 Set 2
Min Max Avg Std Min Max Avg Std

F1 1 789 42.26 76.54 1 3825 26.87 101.33
F2 1 519 50.45 54.63 1 860 58.03 67.48
F3 1 227 5.40 10.24 1 250 6.77 12.86

PPF1 1 26.48 1.96 2.03 1 27 2.28 2.65
PPF2 1 16.50 10.63 2.50 1 17 11.01 2.00
PPF3 1 5 1.32 0.65 1 5 1.5 0.90
BPP1 40 156.42 58.48 6.70 40 225.71 62.15 16.69
BPP2 50.88 267.27 125.67 13.66 52 319.42 132.33 13.31
BPP3 40 836 79.19 78.31 46 1148 73.07 66.20

Table 6.3: Empirical distribution details for F , PPF and BPP in each attack phase for
the training data sets.

to keep in mind that an attack time series is relative to a single attacker
and its victims, while a normal SSH time series describes the traffic of an
entire network;



6.4 Model validation 95

Set 1 Set 2
Min Max Avg Std Min Max Avg Std

F 1 1026 6.32 6.37 1 1074 6.40 10.02
PPF 1 1094587 965.44 6519 1 766816.5 608.11 5472.20
BPP 40 1500 250.87 290.07 40 1500 251.07 276.18

Table 6.4: Empirical distribution details for F , PPF and BPP for the normal traffic in
the training data sets.

3. once sj has been selected, the model randomly generates values of F ,
PPF and BPP , by inverting the empirical cumulative distribution func-
tions derived by the output distributions associated to the state;

4. the model outputs the triple (F, P,B), calculated based on the random
values drawn in the previous step:

P = PPF · F,
B = BPP · PPF · F ;

5. once the observations have been emitted, the process iterates from Step
1.

At each iteration, the model generates a triple (F, P,B). The generation is inde-
pendent from the previous outputs and is controlled only by the (joint) empir-
ical probability distributions of F , PPF and BPP associated with the current
state.

The presented models have different mechanism for deciding the length
of a generated time series, as indicated in Step 2 of the generation procedure.
The attack model controls autonomously the duration of a trace, since a trace
ends only when a transition to the End state is randomly selected. However,
this is not the case for the normal traffic model, where we simulate an ergodic
process. In this second case, we manually set the length of a trace. In our
generation process, we set the length of a sequence of normal traffic to n =
50000 transitions. Each transition corresponds to a time bin of one second in
the synthetic time series.

6.4.4 Testing methodology and experimental results

Our testing methodology aims to measure the statistical characteristics of a set
of synthetic traces and compare them to the ones of the original data sets Set 1



96 6 Automatic ground truth generation

and Set 2. Each statistical metric is calculated for flows, packets and bytes. We
are interested in three types of statistical measures:

• the mean and standard deviation of flows (µF , σF ), packets (µP , σP ) and
bytes (µB , σB) over time. These measures describe the overall behavior of
flows, packets and bytes independently of each other in a trace;

• the correlation coefficients between, respectively, flows and packets ρFP ,
flows and bytes ρFB and packets and bytes ρPB . These measures de-
scribe the dependence between flows, packets and bytes in the same trace;

• autocorrelation of lag 1, therefore between consecutive time bins, of flows
(RF ), packets (RP ) and bytes (RB). The autocorrelation captures the evo-
lution of a trace over time, measuring the inter-relation of the trace with
itself in different moments in time.

In our experimental results, we calculate the average values of each mea-
sure for both the original data sets and the synthetic ones. For the synthetic
trace, we also calculate the 95% confidence intervals. Each synthetic data set
consists of 300 traces. Finally, we evaluate how well the synthetic traces ap-
proximate the original ones. To do so, we calculate for each measure m the
relative error, express in percentage, between the original traces and the syn-
thetic ones, as follows:

Err =
|morig −msyn|

morig
· 100%.

This section describes our experimental results, summarized in Tables 6.5
and 6.6, as follows. The columns Set 1 and Set 2 show the statistical metrics
for the original data sets. Similarly, the columns Synthetic 1 and Synthetic 2
present the statistical values we calculate for our synthetic time series and the
respective 95% confidence intervals. Note that the data set Synthetic 1 has been
generated by a model trained on the original data set Set 1, and Synthetic 2 by a
model trained on Set 2. Finally, the column Err gives the relative error between
the original values and the synthetic ones, expressed as percentage.

For Set 1 and Set 2, both the attack model and the normal traffic model cor-
rectly approximate the mean, standard deviation and correlation coefficients.
The relative errors are indeed, in almost all cases, smaller than 10% for the syn-
thetic attack traffic and smaller than 1.5% for the synthetic normal traffic. In all
cases, the confidence intervals are close to the average measure values.



6.4 Model validation 97

Both models, however, fail to fully capture the autocorrelation of the time
series. This measure is in all cases lower than the original. This means that the
original time series have a higher regularity, while the models introduce ad-
ditional randomness in the synthetic time series. This phenomenon is related
to the Markov property and to the output probabilities. At each transition, in-
deed, the model chooses the next state only based on the current one, without
memory of any past transition. Moreover, at each transition, the model emits
an output that is independent from the previous ones. As a consequence, for
example, the SSH dictionary attack model imitates a less regular brute-force
phase, while the normal traffic model, for example, does not include the mod-
erate night/day pattern shown in the original flow time series.

6.4.5 Time series composition

0 
100 
200 
300 
400 
500 

00:00 04:00 08:00 12:00 16:00 20:00 00:00

flo
ws

Time

Normal traffic
Attack traffic

0
400
800

1200
1600

00:00 04:00 08:00 12:00 16:00 20:00 00:00

pa
ck

et
s 

/ 1
03

Time

Normal traffic
Attack traffic

0
400
800

1200
1600
2000

00:00 04:00 08:00 12:00 16:00 20:00 00:00

 b
yt

es
 / 

10
6

Time

Normal traffic
Attack traffic

Figure 6.10: Example of synthetic network time series.

Our network traffic generation is based on the independent generation of
synthetic time series for normal and malicious traffic. We proceed as follows:

• a normal traffic time series of length n is generated. For this experiment
we choose n = 86400, corresponding to a time series of one day;



98 6 Automatic ground truth generation

Set 1 Synthetic 1 Err (%)
µF 11.06 12.27 ± 0.33 10.9
µP 66.91 66.66 ± 3.67 4.6
µB 7337.33 7524.73 ± 523.11 2.5
σF 36.45 38.33 ± 1.12 5.1
σP 324.29 243.43 ± 10.91 24.9
σB 28510.35 28345.60 ±1616.63 0.5
ρFP 0.79 0.79 ± 0.012 0.1
ρFB 0.76 0.74 ± 0.016 2.3
ρPB 0.94 0.98 ± 0.002 4.7
RF 0.46 0.23 ± 0.009 49.8
RP 0.56 0.25 ± 0.012 54.7
RB 0.58 0.26 ± 0.012 54.9

(a) Set 1

Set 2 Synthetic 2 Err (%)
µF 15.80 15.15 ± 0.65 4.1
µP 150.52 138.85 ± 8.5 7.7
µB 19016.00 18107.88 ± 1153.53 4.7
σF 40.0 47.01 ± 1.87 0.174
σP 379.38 419.16 ± 16.55 10.4
σB 47060.07 55378.58 ± 2239.91 17.6
ρFP 0.83 0.86 ± 0.01 3.9
ρFB 0.79 0.81 ± 0.01 2.4
ρPB 0.98 0.98 ± 0.001 0.1
RF 0.64 0.26 ± 0.01 59.3
RP 0.71 0.30 ± 0.009 57.7
RB 0.75 0.30 ± 0.009 59.2

(b) Set 2

Table 6.5: Numerical results for the SSH dictionary attack.



6.4 Model validation 99

Set 1 Synthetic 1 Err (%)
µF 3.28 3.28 ± 0.003 0.04
µP 2318.99 2326.84 ± 10.61 0.33
µB 2031952.31 2028120.93 ± 11141.46 0.19
σF 5.57 5.57 ± 0.06 0.01
σP 19895.84 19942.63 ± 157.65 0.23
σB 20828807.55 20885405.66 ± 192057.48 0.27
ρFP 0.15 0.15 ± 0.002 1.19
ρFB 0.12 0.12 ± 0.001 0.09
ρPB 0.97 0.96 ± 0.0005 0.12
RF 0.53 0.36 ± 0.004 32.0
RP 0.016 0.02 ± 0.0005 13.3
RB 0.008 0.01 ± 0.0005 46.5

(a) Set 1

Set 2 Synthetic 2 Err (%)
µF 3.14 3.14 ± 0.004 0.11
µP 1909.16 1912.80 ± 10.52 0.19
µB 1564403.71 1565983.35 ± 10199.39 0.1
σF 7.13 7.15 ± 0.078 0.2
σP 20930.8 20846.08 ± 192.16 0.4
σB 19526211.3 19588363.33 ± 150151.74 0.3
ρFP 0.14 0.14 ± 0.001 1.42
ρFB 0.12 0.12 ± 0.001 0.33
ρPB 0.95 0.95 ± 0.002 0.33
RF 0.53 0.23 ± 0.0036 56.1
RP 0.03 0.01 ± 0.0006 65.2
RB 0.01 0.008 ± 0.0006 48.0

(b) Set 2

Table 6.6: Numerical results for the normal SSH traffic model.



100 6 Automatic ground truth generation

• a random number of attack time series is generated. We assume the net-
work to be under attack one or two times per day;

• the starting time of each attack is randomly positioned in the time range
of the normal traffic time series;

• we super-impose the attack time series to the normal traffic time series,
that is, for each time bin, we calculate the total number of flows, pack-
ets and bytes as the sum of the normal traffic component and the attack
component.

Figure 6.10 displays an example of synthetic network time series that we
compare with the traffic in Figure 6.4. The synthetic network time series spans
over one day and contains one synthetic attack. The attack lasts 20 minutes and
presents a peak of 499 flows/s. Both the original attack and the synthetic one
are comparable in duration and intensity. However, a comparison of Figure
6.4 and Figure 6.10 shows that the original time series appears more structured
than the synthetic ones. In the original flow time series we see a moderate
night/day pattern, already described in Section 6.2, that is not captured by
the synthetic time series. Regarding the packet and byte time series, in the
original traffic we observe that the moments of higher activity are grouped
in bursts, while in the synthetic time series the traffic appears equally noisy
over time. This confirms the observation in Section 6.4.4, clearly indicating that
the synthetic time series has a higher random component, and thus a different
autocorrelation, compared to the original one.

6.5 Discussion on the proposed models

In this chapter, we use SSH dictionary attacks and normal SSH traffic as our
running example. In particular, Section 6.3 presented the models for such
classes of traffic. A question that might arise while studying the proposed
models concerns the generality of the approach. In this section, we present
some remarks regarding this topic.

In Section 6.1, we argued that one of the cornerstones on which our ap-
proach is based is the separate modeling of malicious and benign traffic. The
model for the malicious traffic would therefore describe a specific attack. This
requires the researcher to have a clear knowledge of how the attack works and
what it looks like at flow level. Moreover, the training of the model is subject to
the availability of flow traces containing the attack. However, once a specific



6.5 Discussion on the proposed models 101

attack has been modeled based on representative samples, i.e., once the hid-
den chain has been defined, the HMM framework is flexible enough to fully
describe several variations in behavior. In the case of the SSH dictionary at-
tack, for example, the time spent in each phase might change over time: in this
case, the transition probabilities would need to be recalculated to capture the
new behavior. Another change in behavior would be relative to the number of
measured flows, packets and bytes per seconds. This is for example what we
observed when comparing Set 1 and Set 2 for our SSH dictionary attack. In this
case, the output distributions would need to be adjusted.

Normal traffic is defined in contrast to the attack traffic. We might therefore
say that we consider the normal traffic as background. Consequently, we need
a less detailed model for describing the normal traffic. In our example, we
chose a two-state model. Models that are more complex are possible, depend-
ing on the traffic characteristics we are interested in. For example, an extended
model could mimic the day-night pattern observed in the normal SSH traffic.
Such a model could be based, for example, on two or more (A, I) pairs, i.e., a
situation in which for each active state, there is an inactive state associated to
it. Each pair can be trained on part of the day-night pattern. However, since
the transitions between pairs would of course be governed by probabilities, it
can happen that the model cannot approximate the day-night pattern with suf-
ficient precision. To force the model to mimic the day-night pattern in a more
accurate way, we should introduce memory of when we last transit into the
current (A, I) pair. Considering types of traffic other than SSH, normal traffic
for other protocols might be described by using the same model we propose for
SSH traffic. Of course, the transition probabilities and the output probabilities
would then be set according to the considered protocol.

Besides on the specific protocol, the models depend also on the type of data
we use for the training, i.e., on flow-based time series. Flow-based time series
appear to consist of sequences of active and inactive time bins, due to the infor-
mation used to create the time series (see. Section 4.2). The models we propose
are consequently based on (A, I) pairs. Since an (A, I) pair describe a basic
characteristic of the time series we are working with, we believe that the (A, I)
pairs can be considered as the basic “building block” for flow-based HMMs,
at least at lower time resolution. When increasing the granularity of the time
series, from one second to several seconds, for example, it would be less likely
to observe inactivity bins, until the state I would not result necessary anymore.



102 6 Automatic ground truth generation

6.6 Summary

In this chapter, we presented an approach to generate synthetic time series,
enriched with ground-truth information. Our approach is based on Hidden
Markov Models. We showed that our models provide a compact representa-
tion of the traffic, where only a few states are needed to fully describe the traffic
evolution.

In Section 6.3 we provided models for both malicious and normal SSH traf-
fic. Our models are inferred using only flow information; the training was
based on real traffic traces captured at the University of Twente network. In
Section 6.4 we then proved that our models can be used to generate mean-
ingful flow-based time series that emulate the behavior of SSH attackers and
users. The attacker model approximates the mean, standard deviation and
correlation of the original trace with a 10% relative error. The normal traffic
model shows a relative error up to only 1.5%. The drawback of using HMMs is
that the proposed models fail in approximating the autocorrelation. This phe-
nomenon is due to the higher degree of randomness that the models introduce
in the synthetic time series and it is implicitly related to the Markov property.
In Section 6.4.5, we showed an example of a synthetic time series including a
dictionary attack. The synthetic time series clearly resembles the original one,
as presented in Section 6.2. Finally, in Section 6.5 we briefly discuss the gener-
ality of our approach.

Modeling flow-based time series using an HMM-based approach gives pro-
mising results. In the future, we aim to further enhance our models by im-
proving the autocorrelation. Possibilities in this direction are the use Semi-
Markov processes [126] or the refinement of the current models by adding
more states. Moreover, related work that explicitly accounts for autocorrela-
tion can be found in the field of traffic modeling for performance evaluation,
as for example [62, 16, 127]. However, these approaches are usually focusing
on the autocorrelation of a single metrics, such as for example the number of
packets arriving in a certain interval. Differently, we are working with several
traffic metrics, namely the number of flows, packets and bytes. The challenge
that we face, in this case, would consist in extending these and similar ap-
proaches to model both the autocorrelation of a certain measure and, at the
same time, the correlation with other measure.

The research presented in this chapter proves that not only we can capture
the main statistical characteristics of the original time series, but also that we
can qualitatively reproduce time series that resemble real-world traffic. More-
over, as far as ground truth is concerned, we are now able to create labeled data



6.6 Summary 103

sets in an automatic manner, solving the problem of collecting and labeling real
data for the specific case of intrusion detection based on flow time series.



104 6 Automatic ground truth generation



CHAPTER 7

Tuning intrusion detection systems

Chapters 5 and 6 dealt with the creation of labeled data sets for intrusion de-
tection, in terms of manually and automatically generated ground truth, re-
spectively. This chapter moves now the focus of research to the second issue
that we have identified in Section 1.2, i.e., the optimization of an IDS based on
high-level policies.

To address this problem, the goal of this chapter is to present an optimiza-
tion procedure that aims to tune the parameters of an IDS to perform as spec-
ified in high-level policies. We provide details regarding our approach in Sec-
tion 7.1. As introduction to our procedure, we first present in general terms
the IDS we want to optimize in Section 7.2, the type of attack we aim to detect
in Section 7.3, and the performance measures used to validate our findings in
Section 7.4. Our optimization procedure, that we present in Section 7.5, is sup-
ported by an extensive validation step. We present our results in Section 7.6.
Moreover, our research opens the way to further developments: we take a first
step towards adaptability, which can be seen as a form of optimization over
the long term, in Section 7.7. We suggest extensions of the basic assumption
for IDSs validation in Section 7.8. Finally, Section 7.9 summaries our findings.

7.1 General approach

An IDS aims to discriminate between malicious and benign activities. Since
attackers are often trying to conceal their activities among normal traffic, per-
forming such a task is not easy. It is therefore commonly accepted that, while
monitoring, the IDS might make some errors, such as missing intruders (false
negatives) or erroneously reporting benign activities (false positives). How-
ever, while tuning a system, we implicitly aim to achieve the best compromise,
or optimal solution, that is keeping the false positives as low as possible while



106 7 Tuning intrusion detection systems

trying to detect as many real attacks as possible. Note that, in many cases, de-
creasing the rate of false positives means that the false negative rate increases,
as we have schematically indicated in Figure 1.3. Therefore, there exists a nat-
ural trade-off between detecting all anomalies (at the expense of raising alarms
too often), and missing anomalies (but not issuing any false alarms).

Moreover, we argue that there might exist several optimal strategies, de-
pending on the situation. For example, if the IDS reports to another system,
such as, for example, an alert-management module, one might want to be more
permissive with respect to the number of raised false positives, since they will
be filtered by the alert-management module at a later stage. However, if the
IDS reports directly to a human system administrator, one might not want the
system to raise alerts too often. In addition, the type of attack being monitored,
and its impact on the monitored infrastructure, can influence the choice of how
dangerous it is to miss an attack. Therefore, while seeking the optimal solution,
high-level policies should be taken into account.

The goal of this chapter is to address the optimality question, usually left to
the care of the system developer or the IT personnel, in an autonomic manner.
We propose a systematic framework that, by keeping into account high-level
policies, enables tuning the parameter of an IDS to ensure optimal detection
(w.r.t. the trade-off described above). To reach our goal, our approach is based
on the following assumptions:

• The data aggregation in network flows implies that less data need to be
monitored and analyzed for intrusions. However, the coarser data gran-
ularity and the lack of payload information make flow-based intrusion
detection a challenge. To compensate for the lack of information carried
by a single flow, we introduced, in Chapter 4, time series of flows, packets
and bytes per second. These time series allowed us to reveal trends in
the traffic that could be exploited for intrusion detection. In this chapter,
we propose an example of a time series-based, anomaly-based IDS. The
system relies on a model of normality capturing the safe behavior of the
monitored network. In the specific context of this thesis, the normality
model is a Hidden Markov Model (HMM).

• We propose a systematic framework for optimizing the parameters of our
flow-based, time series-based IDS. We approach the parameter tuning
by solving a non-linear optimization problem that addresses the trade-
off between true positives and false positives in a probabilistic manner.
Moreover, our solution explicitly keeps into account the fact that the op-



7.2 Detection system principles 107

timal solution might depend on high-level policies, following by the spe-
cific situation in which the IDS should operate.

• The system that we propose relies on a model of normality. However, as
often is the case for network traffic, normality can be subject to changes,
due to, for example, seasonal trends. A desirable characteristic in an
anomaly-based system is therefore to be resilient to changes in normal-
ity, meaning that the system is either able to keep functioning even if
the normality model needs to be re-adjusted, or it is able to re-tune its
parameters to include the new situation. We refer to the latter as adapt-
ability. In our opinion, adaptability constitutes a field of research in itself.
In this chapter, we take a first step towards adaptability, showing how
such characteristic could be included in the proposed method.

7.2 Detection system principles

The general assumption underlying network anomaly detection is that mali-
cious activities (statistically) deviate from the network’s normal behavior [33].
In this section, we present in general terms an anomaly-based system that
builds upon the techniques developed in Chapter 6. We then point out the
challenges faced when aiming to automatically tune and optimize the system
parameters.

Figure 7.1 presents a high-level overview of the proposed detection system.
We assume the system to be based on a probabilistic model of normal behav-
ior, indicated by λ. The system observes a stream of network measurements
{o1, o2, . . .} and analyzes a window (of length w ∈ N) of past measurements,
to which we refer as observation sequence. Observation sequences have been
introduced because, since flows do not carry information on the content of a
communication, in many cases a single flow or a single time bin can hardly be
indicative of the presence of an attack. At time t ∈ N, our detection procedure
evaluates the likelihood of observing the sequenceOwt = {ot−w+1, . . . , ot}, with
respect to our base model λ; we denote this likelihood by Φ(Owt |λ). Informally,
the value Φ(Owt |λ) is an indication of how likely it is to observe Owt according
to what we consider normality. Evidently, unlikely sequences will yield rel-
atively low likelihoods, legitimate sequences relatively high likelihoods. The
challenge is to discriminate between these two scenarios.

For the implementation of our system, we defined the base model λ as an
HMM. As argued in Chapter 6, HMMs are particularly suitable for time-series



108 7 Tuning intrusion detection systems

Φ(ot−w+1, . . . , ot |λ)

w θ

{o1, o2, . . .}
{

attack
safe traffic

Figure 7.1: Detection system.

anomaly detection because they allow a compact representation of the stud-
ied system, in this case network traffic, while encoding its evolution in time.
Moreover, HMMs offer efficient ways of calculating the probability that a spe-
cific sequence of observations occurs.

The selection of the parameters θ and w does play a crucial role in the ef-
fectiveness of the detection system. If θ is too low, it is likely that the system
would be prone to raise false alerts (false positives, in the sequel denoted by
FP), by raising alerts also in case of legitimate observation sequences; if θ is too
high, on the other hand, the rate of alerts being generated would decrease, but
the system would become less reactive to malicious activities (false negatives;
FN).

The impact of w can be understood as follows. If w is small, a single obser-
vation may have significant impact on the statistic Φ(Owt |λ), possibly causing
“too quick” false alerts (FP). On the other hand, bearing in mind laws of large
numbers, large values of w may smooth out the effect of occasional unlikely
events, with the risk of missing anomalies (FN).

The values of θ and w define therefore interesting trade-offs that determine
the performance of the detection system. The goal of this chapter is to present
a systematic framework yielding optimal values for the parameters θ and w.
It should be realized, though, that, as argued in Section 7.1, this selection very
much depends on the specific goals pursued in the situation at hand: is the
primary objective to allow false alerts but to be sure to flag all the anomalies,
or vice versa, or perhaps some intermediate scenario? The selection procedure
that we propose here explicitly takes into account this preference.

7.3 SSH case study

In the following sections, we will illustrate the performance of the proposed
detection system by means of the case study that accompanied us along this



7.3 SSH case study 109

thesis: the SSH dictionary attack and the SSH normal traffic.

A I

0.757 0.718

πA = 0.537

πI = 0.463

0.243

0.282

Figure 7.2: Normal SSH traffic model.

As indicated before, we should first define a base model λ describing the
normal behavior, i.e., the traffic that was not generated by an SSH dictionary
attack. We do so by relying on the HMM of Figure 7.2, which was developed
and validated in Chapter 6. The Discrete Time Markov Chain (DTMC) consists
of two states: a stateA, in which SSH traffic is present on the network (activity),
and a state I , in which no SSH traffic is present on the network (inactivity). The
model parameters are estimated by training the model on traces of legitimate
SSH traffic collected on the UT network (cf. Section 6.4.1). We let the starting
distribution π = [πA, πI ] be equal the DTMC’s steady state distribution. Each
state is augmented with an output probability distribution that in this case is
the empirical distribution function of flows per second. Empirical distribu-
tions of packets per second and bytes per seconds are also possible. However,
as described in Chapter 4, flows per second is the discriminant measure be-
tween malicious and benign activities for SSH dictionary attack, therefore we
concentrate on that distribution.

We indicate with Owt = {ot−w+1, . . . , ot} the observation sequence in the
time-frame t−w+ 1, . . . , t in our training set. Note that, according to such def-
inition, each observation sequence in the training set is unique, independently
from the values oi that constitute it. In the HMM framework, we refer to the
probability of an observation sequence Owt as:

Φ(Owt |λ) =
∑

∀Q

πqt−w+1bqt−w+1(ot−w+1)

t∏

i=t−w+2

aqi−1qibqi(oi), (7.1)

where we assume that the observation sequenceOwt could have been generated
by several state sequences Q = {qt−w+1, . . . , qt} and we indicate, with aqjqi
the transition probability from state qj to state qi, and with bqi(oi) the output



110 7 Tuning intrusion detection systems

 0

 100

 200

 300

 400

 500

 600

 700

 800

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

flo
ws

Time (h)

UT flows

Figure 7.3: Time series for a day of SSH traffic (flows/second).

probability of symbol oi in state qi. Φ(Owt |λ) tends to be small when w grows,
and therefore it is more convenient to work with

`wt := − log Φ(Owt |λ), (7.2)

where the minus sign allows us, in our example, to work in R+.

Note: There are similarities between using an HMM for generation
purposes, as done in Chapter 6, and for calculating the probability
of an observation sequence. In both cases, indeed, we are progres-
sively building a path on the Markov chain. However, in the case of
the generative process (see Section 6.4.3), each transition and out-
put is randomly chosen at each instant of time t. When we are calcu-
lating the probability of an observation sequence, on the contrary,
we should take into account that the same observation sequence
could have been generated by several different state sequences. We
are therefore considering the joint probability over all the possible
state paths in the chain that could have generated the observation
sequence.



7.3 SSH case study 111

 0

 200

 400

 600

 800

 1000

 1200

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Time (h)

window size = 100

!
w t

1

Figure 7.4: Log-likelihood of the time series of flows per second in Figure 7.3.

Since the HMM in Figure 7.2 is trained on benign SSH traffic, the model is
supposed to assign relatively high (low) `wt values to sequences of malicious
(legitimate) traffic. Figure 7.3 shows the time series of flows per second for the
SSH traffic measured at the University of Twente on July 16, 2008. Between
7:00 and 7:40, the university network has been the target of an SSH dictionary
attack. For the detail of that type of attack, we refer to Section 6.2. In Figure 7.4
we present an example of how `wt raises in case of network anomalies, based on
the data of Figure 7.3, taking w = 100 sec. The window of observations slides
over the time series with a step size of 1 second. Figure 7.4 shows that `wt attains
values roughly between 200 and 400 during the normal phases, whereas during
the attack the value of `wt abruptly raises to 1000. This graph suggests that
`wt is a suitable measure for discriminating between normal and anomalous
traffic. However, we observe that also other observation sequences provoke
a raise of `wt , for example around 10 AM, 4 PM, and 10 PM. In these cases,
applying a threshold θ of 500, a network anomaly would have been reported
even though there was no indication of malicious activity; θ = 800 would be
a more appropriate choice here. This underscores that procedure to soundly
select θ is of crucial importance.



112 7 Tuning intrusion detection systems

7.4 Attacks, observations and detection

In this section, we will define the performance measures we will later use to
evaluate and optimize our prototype detection system. In Section 7.4.1, we
describe our system in terms of a binary classifier. This characterization allows
us to define the performance metrics we are interested in, in Section 7.4.2.

7.4.1 Binary classifier

A detection system is traditionally regarded as a binary classifier [47]. A binary
classifier analyzes a set I of instances of a problem and map these to two predic-
tion classes. The prediction classes in the case of intrusion detection are usually
indicated as:

• P , or positive: P ⊆ I , such that i ∈ P if i has been labeled as an attack;

• N , or negative: N ⊆ I , such that i ∈ N if i has been labeled as legitimate.

We assume P ∩N = ∅ and P ∪N = I . The performance of a classifier is eval-
uated based on how precise the prediction classes are compared to the actual
classes of the instances (the ground truth). We indicate the actual classes as:

• M , or malicious: M ⊆ I , such that i ∈M if i is an attack;

• B, or benign: B ⊆ I , such that i ∈ B if i is legitimate.

Also in this case we assume M ∩B = ∅ and M ∪B = I .

Actual and prediction classes

The definition of the setsB,M , P andN depends on the specific characteristics
of the IDS. In certain cases, the definition is straightforward. For instance, for
a stateless payload based IDS, M would be the set of packets generated by an
attacker, B the set of legitimate packets and packets would be assigned to P
and N according to the output of the detection engine. In other words, for this
type of payload-based IDS, a packet is an instance of the classification problem.

In the case of flow-based intrusion detection, such a characterization is not
straightforward. As described in Section 7.2, we propose to approach flow-
based intrusion detection by considering a window of past observations Owt .
This approach implies that Owt is the traffic instance that we aim to classify. We
therefore define B, M , P and N as sets of observations sequences.



7.4 Attacks, observations and detection 113

In the text below, we will show that B, M , P and N depends on the obser-
vation sequence length w. We therefore stress this dependence by introducing
the superscript Bw, Mw, Pw and Nw.

Given an observation sequence Owt = {ot−w+1, . . . , ot}t, each observation
oi can be either malicious, if there was an attacker active at time i, or benign, if
no attacker was active at time i. Each observation sequence can therefore con-
tain several malicious observations. Due to the sliding window mechanism,
the malicious observation will be added on the right side of the observation
sequence and leave the observation sequence on the left side. In other words,
we define an attack to begin when the first malicious observation appears in
the rightmost (youngest) position in the observation sequence; similarly, an at-
tack ends when a benign observation appears in the rightmost position in the
observation sequence.

We derive therefore the following definitions:

Mw = {Owt | ot is malicious}, (7.3)
Bw = {Owt | ot is benign}. (7.4)

With this definition of Mw and Bw, it is important to note that the discrim-
inant condition between malicious and benign observation sequences is given
by the youngest observation. The consequence of this is that an observation
sequence will be considered malicious (benign) even if all but the last obser-
vation are benign (malicious). In other words, we can say that our definitions
focus on the current situation and not on the past observations. Note, however,
that other definitions of Mw and Bw are possible.

Finally, the prediction classes are such that an observation sequence is ma-
licious if it deviates from the base model of traffic λ. We therefore define:

Pw = {Owt | `wt > θ}, (7.5)
Nw = {Owt | `wt ≤ θ}. (7.6)

7.4.2 Performance measures

This subsection introduces the performance measures of interest for our study.
We propose three groups of performance metrics. The first two, the confusion
matrix and the detection rate are traditionally used in evaluating IDSs [13]. The
third group, the detection and normalization lags, has been introduced in this
thesis to quantify the delays the detection system incurs in detecting an attack
and in recognizing the re-establishment of a normal situation.



114 7 Tuning intrusion detection systems

True
Positive
P ∩M

False
Negative
N ∩M

False
Positive
P ∩ B

True
Negative
N ∩ B

PREDICTION CLASSES
IDS output

P N
A

C
T

U
A

L
C

L
A

SS
E

S
G

ro
un

d
Tr

ut
h

M

B

Figure 7.5: Confusion matrix [47].

Confusion matrix

The confusion matrix [47] describes both the corrected classified instances and
the errors between the classes. Based on the confusion matrix, the following
performance metrics can be defined:

• the true positive TP = #{P ∩M}; and the false negative FN = #{N ∩M};

• the true negative TN = #{N ∩B}; and the false positive FP = #{P ∩B}.

Figure 7.5 gives a graphical representation of the confusion matrix and the de-
rived performance metrics [47]. Such measures are often expressed in terms of
rates, that is TP-rate = TP/#{M}, FP-rate = FP/#{B}, and so on. In the sequel,
we will use the notation TN, TP, FN, FP as rates, such that TN+FP = TP+FN = 1.

Detection rate

Traditionally, intrusion detection measures the system performance in terms of
TN, TP, FN, FP, based on the sets M , B, P and N . In our case, the element of
such sets are observation sequences Owt . Most probably, an attack will consist
of a set of observation sequences. We indicate the starting and ending time of
an attack A as ts and te, respectively. Following Bolzoni [13], we define A to be



7.4 Attacks, observations and detection 115

detected if there exists at least one observation sequence Owt , ts ≤ t ≤ te such
that Owt ∈ P ∩M , i.e., at least one observation sequence part of the attack is
flagged as positive.

Besides the rate of correctly classified observation sequences, we can there-
fore also measure, for a set of attacks in our data sets, how many attacks have
been detected. We define this performance measure as the detection rate per
attack:

DR =
#{detected attacks}

#{attacks} .

Detection and normalization lags

A detection system aims to identify the presence of an attack. A likely situa-
tion is that classification errors would be observed at the beginning and at the
end of the attack. While the traffic is entering the observation window, some
observation sequences will be classified as negative, since only few observa-
tion are malicious. Conversely, while the window is leaving the attack, some
observation sequences will be flagged as positive, since only their youngest
observations are benign. However, it is highly preferable that an attack is de-
tected fast. Moreover, it is desirable for a detection system to also recognize as
fast as possible that an anomalous situation is over.

Since in our setup we rely on a sliding window mechanism with steps of
1 second, we can measure how promptly the system reacts by analyzing the
classification errors at the beginning and at the end of an attack. It is therefore
desirable to have a low rate of false negatives in the beginning of an attack and
a low rate of false positives when an attack is over.

Given an attack A, and its starting and ending time, ts and te, we then
define the following measures:

• the detection lag, i.e., the delay before an attack is detected:

Dw
A := min{t ≥ ts| Owt ∈M ∩ P} − ts;

• the normalization lag, i.e., the delay in recognizing that an attack is over.
Since we aim to investigate the impact of the history on the analysis of
normal traffic, we measure the normalization lag within w observations
from the end of the attack:

EwA := min{te ≤ t < te + w| Owt ∈ B ∩N} − te.



116 7 Tuning intrusion detection systems

Finally, we can calculate the average, over the attacks present in our data
sets, of the detection and normalization lags.

7.5 The optimization procedure

In Section 7.1, we argued that tuning an IDS entails searching for an optimal
solution w.r.t. the trade-off between detecting as many attack as possible and
having a low rate of false alarms. More generally, let us consider an IDS with
parameters p1, . . . , pn and a high-level policy P describing the required behav-
ior of the IDS in terms of some performance metricsM1, . . . ,Mm, such as for
example TP and TN. To automatically tune the system parameters to satisfy P ,
the following steps should be taken. First, it is necessary to define a mathe-
matical relation Goal of the performance metric that we aim to optimize, that
keeps into account the policy P :

maximize
p1,...,pn

Goal(M1, . . . ,Mm,P).

This relation describes the goal, such as for example maximizing the correct
classification. However, in the present formulation, the optimization problem
requires that we are able to measure the performance metrics M1, . . . ,Mm.
This operation can be computationally intensive. The second step we propose
is, when the situation allows it, to analytically express the relation between the
performance measures and the system parameters. Once we have expressed a
mathematical relation between performance measures and the system param-
eters, the last step is to analytically solve the optimization problem. In case the
second step cannot be undertaken, it should be evaluated if it is still possible
to solve the optimization problem by using empirical data. However, as said,
this operation may be costly. Table 7.2 summarizes the steps described above
and shows how we will address these in the following.

7.5.1 The optimization problem

This section focuses on formalizing the parameter tuning as an optimization
problem (step 1 of the procedure in Table 7.2). Our aim is to determine suitable
values for the parameters w and θ. The performance of an IDS is usually pre-
sented by means of a so-called Receiver Operating Characteristics (ROC) [47].
The ROC curve plots the combinations of FP and TP, by varying θ. ROC curves
are a technique for visualizing the performances of a classifier, since they show



7.5 The optimization procedure 117

General procedure Setup used in this thesis

IDS parameters p1, . . . , pn IDS parameters θ, w
Performance metricsM1, . . . ,Mm Performance metrics TN, TP
Policy P Policy (α, β)

step 1: define the optimization problem

maximize
p1,...,pn

Goal(M1, . . . ,Mm,P).

step 1:

maximize
θ,w

α · TN + β · TP

step 2: express an analytical relation be-
tween p1, . . . , pn andM1, . . . ,Mm.

step 2:

TN = P(Xw ≤ θ), TP = 1− P(Y w ≤ θ)

Xw, Y w
d
= Gm(p,µ,σ)

step 3: analytically solve the optimization
problem.

step 3: solve Problem (7.7)

Table 7.2: The optimization procedure.

the “relative trade-offs between benefits (TP) and costs (FP)” [47]. Intuitively,
the steeper the ROC curve grows, the better is the performance of the classifier.

Figure 7.6 shows examples of ROC curves obtained by testing the HMM-
based detection system on a synthetic data set of SSH traffic for different win-
dow sizes. As mentioned above, each point on the ROC curves is determined
by a different value of the threshold θ. The curves show a steep growth of TP
for low values of FP, while the curves grow slower for higher values of FP. The
ROC curves indicate that the proposed detection system is able to discriminate
between malicious and benign observation sequences with high TP and low FP.
However, Figure 7.6 also shows that:

• The ROC curves growth depends on the observation sequence length w;
we plotted curves for three values w. They indicate that the performance
of the procedure can be improved by choosing w optimally. For instance,
as shown in the subplot of Figure 7.6, to obtain TP = 0.98, w = 100 would
provide the lowest FP. Moreover, the optimal value of w will change with
the desired TP and FP.

• Since θ controls in which point of a ROC curve we operate, the choice of



118 7 Tuning intrusion detection systems

the threshold value θ depends on the desired performance. For example,
for w = 100 we can obtain TP = 0.8 with FP = 0.02, but also TP = 0.93
with FP = 0.1.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

Tr
ue

 P
os

itiv
e 

Ra
te

False Positive Rate

win  100
win  300
win  500

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

Tr
ue

 P
os

itiv
e 

Ra
te

False Positive Rate

Figure 7.6: Receiver Operating Characteristics, for varying window size.

The above reasoning indicates that one can optimize the parameters w and θ,
and the optimum critically depends on the relative importance the user assigns
to TP and FP. Making use of the relation TN = 1 − FP, we formulate the opti-
mization problem as follows:

maximize
θ,w

α · TN + β · TP. (7.7)

Here the parameters α and β embody the relative importance the operator
assigns to TN and TP. If he chooses α substantially larger than β, the optimiza-
tion would lead to (w, θ) that makes the system behave conservatively, flagging
anomalies only if there are strong evidences of an attack, at the expense of rel-
atively many false negatives. On the other hand, if he picks α considerably
smaller than β the system would become more aware of malicious traffic, fa-
voring in this way TP, but by increasing FP.



7.5 The optimization procedure 119

7.5.2 Probabilistic interpretation of the classification problem

We concentrate now on formalizing the relation between the system parame-
ters and the performance metrics (step 2 of the procedure in Table 7.2). For
each observation sequence Owt , the value `wt is an indication of the sequence
being malicious or benign. We now define the following random variables: for
an arbitrary observation sequence of length w,

Xw := − log Φ(Owt |λ) for Owt ∈ Bw

for a benign observation sequence, and

Y w := − log Φ(Owt |λ) for Owt ∈Mw

for a malicious observation sequence. Note that in defining the random vari-
ables Xw and Y w we make use of the logarithm notation introduced in Equa-
tion (7.2). For any given w, we can estimate the density functions fwX(·) and
fwY (·), in the form of normalized frequency histograms. An example of these
are shown in Figure 7.7 for w = 100, based on the analysis of normal and mali-
cious traffic. In the figure we also show an example value for θ, which splits the
sample spaces in regions. The subspace to the left of the threshold corresponds
to negatively-flagged inputs; in the same way, the subspace to the right of the
threshold corresponds to positively-flagged inputs. The intersection between
such subspaces and the probability distributions results in regions that we can
map directly on the confusion matrix of our binary classifier. In particular,
according to this formulation, we have

TN = P(Xw ≤ θ), FP = 1− P(Xw ≤ θ), (7.8)
FN = P(Y w ≤ θ), TP = 1− P(Y w ≤ θ). (7.9)

We can now rewrite Problem (7.7) as follows:

maximize
θ,w

α · P(Xw ≤ θ) + β · (1− P(Y w ≤ θ)). (7.10)

In Figures 7.8(a) and 7.8(b) we report separately, for readability, the density
functions and the confusion matrix measures forXw and Y w, respectively. Fig-
ure 7.7 also shows that the distributions of Xw and Y w overlap, and θ cannot
be chosen such that it perfectly discriminates between malicious and benign.
The presence of an overlapping region, and its size, can change from data set
to data set, and this imposes a sort of theoretical limit to the classification per-
formance of the detection procedure.



120 7 Tuning intrusion detection systems

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  100  200  300  400  500  600  700  800
-log(P(Ot

w| ))

TN

FN FP TP

fXfY

Figure 7.7: Performance measures and empirical distribution functions.

In (7.10), TN and TP are expressed in terms of the cumulative distribution
functions of Xw and Y w. These cumulative distribution functions can be de-
termined empirically, in the same way as we did for the densities in Figure 7.7.
However, since our goal is to perform the optimization in (7.10), which is over
θ and w, we need the distribution functions P(Xw ≤ ·) and P(Xw ≤ ·) for a
broad range of values of w. Evidently, estimating these for many and espe-
cially for large values of w will make the optimization procedure slow: the
complexity of computing `wt is linear in w, and such measure is computed for
each observation sequence, i.e., each time the window slides over the time se-
ries. Therefore, especially for a large amount of training data, such a procedure
is costly. To reduce the complexity, we propose to (i) approximate the empir-
ical distribution densities by means of fitted distributions for some (relatively
small) set of w, and to (ii) find a relation between the fitted parameters and w
(for example by approximating them with simple polynomial functions). This
approach yields approximations of the distribution function for any value of
w. Our analysis of the empirical density function for Xw and Y w for variable
values of w shows that a Gaussian mixture distribution (denoted by Gm) offers a
suitable fit for the considered distributions. Following the convention to write



7.5 The optimization procedure 121

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  200  400  600  800
-log(P(Ot

w|!))

TN

FP

fX
"

(a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  200  400  600  800
-log(P(Ot

w|!))

FN TP

fY
"

(b)
Figure 7.8: Performance measures and empirical distribution functions (details).



122 7 Tuning intrusion detection systems

vectors in bold, we say that a random variable Z is Gm(p,µ,σ) of order n ∈ N,
with pi ≥ 0 adding up to 1, if its probability density function is in the form

fZ(x) =

n∑

i=1

pifNi
(x),

where the components Ni = N (µi, σi), for i = 1, . . . , n, are independent nor-
mally distributed random variables.

Finally, to finalize our procedure, step 3 can be completed by optimizing
(7.10). Since the empirical density function for Xw and Y w are fitted with
Gaussian mixture distributions, (7.10) can also be rewritten as the sum of the
cumulative distribution functions of the Gaussian component, i.e., as a sum
of cumulative distribution function of normal distributions. We indicate the
cumulative distribution function of Ni(µi, σi) with

F (θ, µ, σ) =
1

σ
√

2π

∫ θ

−∞
e−(x−µ)

2/2σ2

dx. (7.11)

Then, (7.10) can be rewritten as

maximize
θ,w

α ·
n∑

i=1

piXwF (θ, µiXw , σiXw)

+ β · (1−
m∑

i=1

piY wF (θ, µiY w , σiY w)),

(7.12)

where n and m are the number of Gaussian components for Xw and Y w, re-
spectively, piXw , µiXw and σiXw the parameters of the Gaussian Mixture for
Xw, and piY w , µiY w and σiY w the parameters of the Gaussian Mixture for Y w.
However, the integral in 7.11 has no analytical solution. Therefore, (7.12) has
to be numerically solved.

7.6 Validation

The aim of this section is twofold. After presenting the data sets used for
testing (Section 7.6.1), we validate our optimization procedure (Section 7.6.2).
Then, we study how varying α and β affects the performance of the system
(Section 7.6.3).



7.6 Validation 123

7.6.1 Data sets

We test our procedure using four data sets of SSH time series of flows per sec-
onds, each containing both legitimate and malicious traffic. Two data sets, Syn-
thetic 1 and Synthetic 2, are synthetically generated as described in Chapter 6.
The other two data sets, Original 1 and Original 2, consist instead of time series
created directly from real traffic collected at the UT network. The synthetic data
sets Synthetic 1 and Synthetic 2 consist of 20 time series of 5400 seconds (time
slots) each, each one of them containing one attack. The data sets Original 1 and
Original 2 are parts of data sets Set 1 and Set 2, presented in Section 6.4.1. More
specifically, they consist of the second half of Set 1 and Set 2. Data set Original
1 contains 7 attacks, while data set Original 2 contains 6 attacks. Attacks have
been identified based on the reports of a quarantine system deployed at UT,
and have been manually labeled.

The HMMs λ have been trained using the first half of Set 1 and Set 2, re-
spectively. Note that, by splitting Set 1 and Set 2, we made sure that we train
the models and test our procedure on different data.

Gaussian fits

In Section 7.5, we propose Gaussian Mixture distributions as suitable fits for the
empirical density functions Xw and Y w. However, the number of components
of the Gaussian mixtures can be data set specific. In our setup, we observed
that

• n = 2 yields an excellent fit for the data sets Synthetic 1 and Synthetic 2.
We therefore define:

Xw d
= Gm(pwB ,µ

w
B ,σ

w
B)

and
Y w

d
= Gm(pwM ,µ

w
M ,σ

w
M );

• for the data sets Original 1 and Original 2, we choose n = 1 for Xw and
n = 2 for Y w:

Xw d
= N (µwB , σ

w
B)

and
Y w

d
= Gm(pwM ,µ

w
M ,σ

w
M ).



124 7 Tuning intrusion detection systems

Figure 7.9 presents an example of the fits for the benign and malicious distribu-
tions in Synthetic 1, obtained for w = 300. Finally, the relation between the Gm
parameters pw, µw and σw and the window size w, for both the benign and
malicious distributions, has been expressed by means of polynomial fits. Our
findings show that µw is a linear function of w, σw can be approximated by a
polynomial of degree 3 and pw by a polynomial of degree 2. For an example of
such polynomial functions, we refer to Appendix B.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0  200  400  600  800  1000  1200  1400  1600  1800  2000
-log(P(Ot

w| ))

fXfYGm(pB, µB, B)
Gm(pM, µM, M)

Figure 7.9: Example of distribution fits, w = 300.

7.6.2 Optimization procedure validation

In Section 7.5, we proposed an optimization procedure build upon Gaussian
Mixture distributions. In this section, we now validate such a procedure, by
measuring how precisely we can approximate the empirical optimal results.
We therefore compare the results of the optimization problem (i) calculated
on empirical data and (ii) analytically calculated by means of Gaussian fits.
For this test, we set α = β = 1. The empirical data are obtained by directly
measuring TN and TP on the empirical distribution of `wt , similar to the one
shown in Figure 7.7.



7.6 Validation 125

Tables 7.3 presents the optimization errors for the data set Synthetic 1. The
table show, for various values of the window lengthw, (i) the optimal empirical
detection rates and threshold; (ii) the optimal analytical detection rates and
threshold as obtained through our procedure by means of Gaussian fits; and
(iii) the relative error between these, expressed in %.

The results in Tables 7.3 show that the approach, based on fitted Gm distri-
butions, very well approximates the results one would have found using the
empirical distributions. For the data set Synthetic 1, the relative error for TN, TP
and θ is indeed for all the considered cases lower than 5%.

We repeated this validation step also for the data sets Synthetic 2, Original
1 and Original 2. For Synthetic 2, the error is lower than 4%, while in the case
of Original 1, it is up to 10%. For the data set Original 2, on the other hand, we
observe a higher error in TP and TN, in certain cases up to 31%. Such higher
errors are due to the polynomial fits used to approximate the parameters ofXw

and Y w as functions of w. In this case, the polynomial fitting does not yield to
the same excellent fits as for the other data sets. The error in approximating θ
remains, however, in any case lower than 10%. For the results relative to these
data sets, we refer to Appendix B.

Our findings confirm that the Gaussian mixtures are a suitable fit for the
malicious and benign `wt distributions and they can be therefore used to com-
pute the optimal parameter θ. Also in the cases in which the estimation of TP
and TN is not subject to a higher error, we are indeed able to closely approxi-
mate θ.

Empirical Analytical Error (%)
w TN TP θ TN TP θ TN TP θ

100 0.94 0.90 321 0.98 0.95 320.94 3.79 4.72 0.02
200 0.95 0.93 626 0.97 0.96 624.14 1.60 2.75 0.30
300 0.94 0.94 920 0.95 0.94 918.13 1.42 0.28 0.20
400 0.91 0.93 1197 0.93 0.93 1202.64 1.76 0.79 0.47
500 0.90 0.92 1497 0.91 0.92 1479.77 0.85 0.75 1.15
600 0.88 0.91 1777 0.89 0.92 1752.37 0.79 2.01 1.39
700 0.87 0.89 2102 0.87 0.93 2023.13 0.74 4.44 3.75
800 0.85 0.89 2366 0.85 0.93 2294.53 0.04 4.21 3.02
900 0.82 0.90 2613 0.83 0.93 2568.68 1.04 3.02 1.70

1000 0.80 0.90 2869 0.82 0.93 2847.47 2.53 2.65 0.75

Table 7.3: Empirical vs. analytical results for the optimization problem (Synthetic 1).



126 7 Tuning intrusion detection systems

7.6.3 Performance measures

The aim of this section is to study the impact of the parameters α and β on
the performance of our simple detection system. We therefore report here the
performance measure for varying ratio β/α. Note that it is not needed to know
the absolute values of α and β, as only their ratio affects the outcome of the
optimization procedure. As explained in Section 7.4.2, the performance are
expressed in terms of: (i) the confusion matrix and (ii) the detection rate, as
commonly done in intrusion detection; (iii) the detection and normalization
lags in recognizing the presence of an attack or the re-establishment of a normal
situation.

Confusion matrix

Confusion matrix Detection and normalization lags
β/α wopt θopt TP TN DA std(DA) EA std(EA)

0.1 110 381.59 0.82 0.99 61.85 38.60 32.42 24.26
0.2 120 404.24 0.87 0.98 53.75 21.76 43.21 25.54
0.3 130 430.12 0.89 0.97 53.50 19.57 52.95 28.89
0.4 130 426.11 0.90 0.97 52.25 19.36 56.37 28.62
0.5 130 423.07 0.91 0.97 51.55 19.65 59.47 28.92
0.6 140 451.3 0.92 0.96 51.45 21.26 68.37 29.93
0.7 140 449.13 0.92 0.96 50.80 21.06 69.11 30.07
0.8 140 447.26 0.92 0.96 50.45 21.01 71.16 30.01
0.9 140 445.63 0.92 0.96 46.95 19.92 72.37 28.52
1 140 444.16 0.92 0.95 46.75 19.83 74.11 28.14

1.5 140 438.54 0.93 0.94 42.45 21.73 76.95 27.09
2 150 464.26 0.94 0.93 43.55 22.67 82.22 28.94
4 150 454.01 0.96 0.90 36.35 22.38 89.82 29.23

Table 7.4: Performance measures for Synthetic 1.

Tables 7.4, 7.5, 7.6 and 7.7 present the confusion matrix and the detection
and normalization lags, as achieved by the system for the data sets Synthetic
1, Synthetic 2, Original 1 and Original 2, respectively. The rows in the tables
are obtained as follows. First, for a given β/α, we compute the optimal w and
θ, based on the learned HMM λ and the Gaussian fits for the considered data
set. Then the data set is analyzed by calculating the test statistic `wt for each
observation sequence. An observation sequence is then classified as positive



7.6 Validation 127

Confusion matrix Detection and normalization lags
β/α wopt θopt TP TN DA std(DA) EA std(EA)

0.1 100 418.39 0.41 0.98 258.15 176.79 33.44 23.84
0.2 100 397.30 0.49 0.97 188.25 161.70 40.94 25.45
0.3 100 386.29 0.53 0.96 153.00 144.85 44.06 24.63
0.4 100 378.47 0.57 0.94 115.00 132.34 46.39 25.02
0.5 220 765.59 0.74 0.89 153.65 135.76 153.35 29.43
0.6 250 856.51 0.78 0.87 130.60 139.30 180.25 29.58
0.7 270 915.30 0.81 0.85 140.40 139.89 201.13 31.69
0.8 290 974.55 0.83 0.84 128.25 143.27 222.19 32.73
0.9 300 1001.75 0.85 0.83 129.20 147.28 233.75 33.22
1 320 1061.59 0.85 0.82 118.30 123.74 252.47 34.13

1.5 340 1106.62 0.88 0.77 98.90 119.67 275.93 31.01
2 350 1124.13 0.91 0.74 61.15 75.72 292.00 32.32
4 340 1055.90 0.95 0.62 38.80 72.76 297.85 32.94

Table 7.5: Performance measures for Synthetic 2.

Confusion matrix Detection and normalization lags
β/α wopt θopt TP TN DA std(DA) EA std(EA)

0.1 940 3555.26 0.06 1.00 762.00 0 56.00 -
0.2 1000 3651.20 0.06 0.99 755.00 0 149.00 -
0.3 1000 3577.90 0.06 0.99 733.00 0 182.00 -
0.4 330 1245.08 0.10 0.99 1057.00 1461.53 60.75 82.21
0.5 1000 2817.50 0.22 0.75 774.00 1379.88 560.00 409.26
0.6 1000 2808.64 0.22 0.74 773.20 1379.66 561.00 409.68
0.7 1000 2801.65 0.23 0.74 772.00 1379.05 561.75 409.84
0.8 1000 2795.88 0.23 0.74 771.40 1378.82 563.00 409.94
0.9 1000 2790.95 0.23 0.73 770.80 1378.49 565.75 410.67
1 1000 2786.64 0.23 0.73 770.60 1378.60 569.50 410.52

1.5 1000 2770.58 0.26 0.72 766.40 1380.26 573.25 411.75
2 1000 2759.21 0.28 0.72 746.20 1391.33 575.50 412.86
4 1000 2727.14 0.32 0.70 735.20 1394.97 590.75 417.67

Table 7.6: Performance measures for Original 1.

or negative. Finally, TP and TN are calculated. Note that the tables also include
results for the detection and normalization lags. We will discuss such results
later in this section. We first focus on the effect of varying α/β on the metrics



128 7 Tuning intrusion detection systems

Confusion matrix Detection and normalization lags
β/α wopt θopt TP TN DA std(DA) EA std(EA)

0.1 1000 3923.12 0.22 0.99 640.80 523.94 0 -
0.2 1000 3854.63 0.23 0.98 623.20 531.67 0 -
0.3 1000 3803.11 0.23 0.97 607.00 530.02 0 -
0.4 1000 3752.98 0.24 0.95 597.60 526.69 0 -
0.5 1000 3691.12 0.24 0.93 583.80 526.55 0 -
0.6 1000 3565.83 0.29 0.88 565.80 516.73 0 -
0.7 1000 3351.39 0.45 0.76 467.50 464.88 178.00 398.02
0.8 1000 3247.08 0.63 0.71 442.17 454.67 208.20 408.37
0.9 1000 3179.27 0.70 0.67 416.50 436.71 29.75 59.50
1 1000 3128.34 0.74 0.62 395.67 425.35 33.25 66.50

1.5 1000 2975.06 0.90 0.46 310.17 383.29 146.50 179.09
2 1000 2888.05 0.93 0.36 250.83 349.33 140.67 243.64
4 310 795.16 0.98 0.12 28.00 68.10 ∞ ∞

Table 7.7: Performance measures for Original 2.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0  500  1000  1500  2000  2500  3000  3500  4000
-log(P(Ot

w|!))

fXfY

Figure 7.10: Distribution for data set Original 2, w = 500.



7.6 Validation 129

TP and TN. Considering the results, we observe that:

• the optimal choice of the design parameters w and θ is data set specific.
This observation entails that w and θ have to be determined for the net-
work under consideration; as could be expected, there are no universally
suitable values;

• the optimal choice of the design parameters w and θ is (β/α)-specific.
This means that, when increasing β/α, the system slowly shifts from fa-
voring TN to favoring TP, as desired. This is visible by observing that for
increasing values of β/α, TN shows a decreasing trend, while TP progres-
sively increases.

Comparing the synthetic and original data sets, we observed that the measured
detection rates are sometimes lower than expected. In particular, we observe
that there is a decrease in performance for the original data sets with respect
to the synthetic ones. More specifically, TP in the original data set shows just
a mildly increasing trend, whereas TN is decreasing considerably faster than
in the synthetic case. The explanation for this phenomenon is to be found in
the distributions of malicious and benign observation sequences, that, as we
pointed out in Section 7.5.2, determine the limitations to the system perfor-
mance. In the case of original traces, we observed, compared to the synthetic
case, a larger overlap of the benign and malicious distributions, i.e., those of
Xw and Y w. We give an example of such distributions in Figure 7.10. The dis-
tributions in Figure 7.10 are relative to the data set Original 2 and calculated
for w = 500. The consequence of such overlapping distributions is that, de-
spite the fact that the chosen parameters are optimal, no better detection rates
are possible in the current setup. Several causes are behind such a limited per-
formance. First, the definitions of Mw and Bw in Section 7.4.1 are such that
partially benign and partially malicious observation sequences would lead to
similar `wt values. We address this topic in Section 7.8. Second, the prototype
used for our analysis, presented in Section 7.2, is very simple. Such a proto-
type was a good starting point for describing our optimization procedure, but
several extensions would be needed before it could be used as an IDS. We dis-
cuss a possible extension in Appendix C. Finally, such results provide us with
indirect information about the quality of the synthetic time series generated as
in Chapter 6. In particular, in Section 6.4.4 we showed that our models are able
to capture the main statistical characteristics of the original data sets, with the
exception of the autocorrelation. We suspect that the higher random compo-
nent in the synthetic time series causes the smaller overlap of the considered



130 7 Tuning intrusion detection systems

distributions. Improving the autocorrelation is therefore a key topic for future
extensions.

Detection and normalization lags

Tables 7.4, 7.5, 7.6 and 7.7 also report the average detection lag DA and the
average normalization lag EA and their respective standard deviations. In
calculating the detection and normalization lags, we adhere to the following
conventions: DA = ∞ if an attack is undetected; EA = ∞ if the system does
not recognize the normal situation within a w slots from the end of the attack.
This choice is due to the fact that we are interested in the effect the history has
in recognizing that an attack is over. DA, EA and their respective standard
deviations are calculated only on the finite values of DA and EA.

In all considered data sets, we observe that the detection lags decrease for
increasing values of β/α, that is, if the system favors TP. However, at the same
time we also observe that, for increasing β/α, the normalization lag tends to
increase. This situation describes well how varying the relative importance of
TN and TP does affect not only the confusion matrix, but indirectly also how
timely we are able to detect an attack or recover from it. Note that, in Table
7.6, for β/α < 0.4, the standard deviation of both the detection and the nor-
malization lags is undefined. This is due to the fact that, for this β/α ratio, the
system detects only one attack. In Table 7.7, we observe that EA and std(EA)
can be undefined or ∞. For β/α < 0.6, i.e., for ratios that favor the TN rate,
the normalization lag is equal to 0. This value, together with the low TP rate,
indicates that the tail of the attack is generally missed and flagged as negative.
For β/α = 4, i.e., for a ratio that clearly favors the TP rate, the normalization
lag raises to∞. To understand this result it is necessary to keep in mind that
β/α describes the relative importance of TN and TP. For such a high β/α ratio,
the trace is almost entirely flagged as positive. Therefore, normality is never
recognized within w slots after the end of the attack, leading to EA =∞.

Detection rates

We investigate the detection rate per attack. We conducted our analysis for
varying β/α and considering the optimal threshold and observation sequence
length, as presented in Tables 7.4, 7.5, 7.6 and 7.7. Table 7.8 presents the detec-
tion rate for the four considered data sets. In the case of the synthetic data sets
Synthetic 1 and Synthetic 2, the system correctly detect all the attacks, showing
DR = 100%. In the case of the original data sets Original 1 and Original 2, we



7.7 First approach towards adaptability 131

observe that the detection rate is not constant, but changes with varying ratio
β/α. As expected, the detection rate increases for increasing β/α, i.e., when the
system favors the TP rate.

DR (%)
β/α Synthetic 1 Synthetic 2 Original 1 Original 2
0.1 100 100 14 83
0.2 100 100 14 83
0.3 100 100 14 83
0.4 100 100 57 83
0.5 100 100 71 83
0.6 100 100 71 83
0.7 100 100 71 100
0.8 100 100 71 100
0.9 100 100 71 100
1.0 100 100 71 100
1.5 100 100 71 100
2.0 100 100 71 100
4.0 100 100 71 100

Table 7.8: Detection rates.

7.7 First approach towards adaptability

In the proposed system, the model λ describes the normal situation of the
network. However, “normality” itself might be subject to changes. Network
data, and derived data as for example the flow-based time series, might change
over time. Holidays can influence the number of users on the network; peri-
odic backups can influence the network usage pattern; finally, exceptional data
transfer can bias our knowledge.

A challenging line of research is to make a detection system resilient to
changes in the modeled reality, or in other words, introducing adaptability into
the system. Adaptability can be seen as a form of system optimization over the
long term. The aim of adaptability is indeed to maintain high performance also
in case of the traffic features changing over time. With respect to this thesis, we
consider adaptability the natural follow up of the presented research, and a
new topic of research in itself. In this section, we take a first step into this



132 7 Tuning intrusion detection systems

new field. The section should therefore be seen as a proof of concept, showing
possible ways to introduce adaptability in a system to improve its long term
performance.

7.7.1 Adaptability in the normal network model

A direct approach to deal with outdated normality models would be to retrain
them. However, to retrain, one needs new ground truth data sets, which, as
discussed in Chapters 5 and 6, can be difficult to obtain. Some authors [149]
propose to use the traffic that an IDS flags as benign to retrain the IDS itself.
Others propose to base the IDS on models that are resilient to noisy data, per-
forming therefore on-line learning without the use of a ground truth data set
[80]. However, the risk in this solution is that the IDS may slowly learn classi-
fication errors, since we might include malicious traffic in the pool of training
data. In this section, we investigate if it is possible to develop an alternative
approach to adaptability that avoids the retraining of the model. To do this,
we will first discuss the various forms in which adaptability can be introduced
in a system. For that purpose, we concentrate once again on our HMM-based
“demo system” (Section 7.2).

Adaptability could be introduced in the system in Section 7.2 in any com-
ponent of our HMMs that has been learned on the training set. We identify the
following situations:

• Markov chain: the Markov chain in Figure 7.2 describes the behavior of
the network w.r.t. interleaving active and inactive time slots. The tran-
sition probabilities are learned based on the training set. If the traffic
pattern changes over time, as for example because we observe a higher
number of inactive (or active) time bins, it is possible that the transition
probabilities need to be adjusted.

• Output distributions: in our models, the output distributions are empir-
ically learned on the training set. However, as previously described in
this section, flow measurements can be subject to change relatively to the
number of users on the network and the usage pattern. In this case, the
transition probabilities might not change, but we observe a higher num-
ber of flows/s. The output distributions spaces are therefore likely to also
change over time.

In the case of the data sets used in this thesis, we observed that the nor-
mal network behavior captured in the Markov chains is subject only to slight



7.7 First approach towards adaptability 133

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 2000  2500  3000  3500  4000  4500  5000  5500  6000
-log(P(Ot

w| ))

fX1fY1fX2fY2

Figure 7.11: Changes in the `wt distributions in Set 1 andSet 2: empirical density
functions .

changes (see Figure 6.6). Despite several months have passed between the col-
lection of the data sets Set 1 and Set 2, we measure an absolute difference lower
than 0.025 in the transition probabilities of the two considered data sets.

The output distributions of the training part of Original 1 and Original 2,
however, show significant differences in the empirical distributions bound-
aries. Figures 7.11 and 7.12 show the empirical distribution function for Orig-
inal 1 and Original 2, w = 1000, and the fitted Gaussian Mixture distributions,
respectively. Note that in these figures we indicate with fX1 and fY 1 the den-
sity functions for, respectively, the benign and malicious observation sequences
for the data set Original 1. Similarly fX2 and fY 2 indicate the benign and ma-
licious observation sequences for the data set Original 2. We can observe the
following:

• considering the lower bound of the probability domain, the empirical
distributions are subject to a shift. Such a shift can be due, for example, to
a different number of users on the network, and, consequently a higher
network usage. This observation is consistent with the fact that Original
1 has been created in summer time, while Original 2 during a normal



134 7 Tuning intrusion detection systems

working period;

• considering the upper bound of the probability domain, we observe that
the empirical distributions are, in this case, subject to a shift and a stretch-
ing factor. This phenomenon can be due to the increased attack intensities
measured in Original 2 compared to Original 1 (see Table 6.1).

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 2000  2500  3000  3500  4000  4500  5000  5500  6000
-log(P(Ot

w|!))

fX1fY1fX2fY2
"1

Figure 7.12: Changes in the `wt distributions in Set 1 andSet 2: fitted distributions .

In Figure 7.12, we have indicated the optimal threshold θ1 for data set Orig-
inal 1, for the parameters w = 1000, α = β = 1. From Table B.4, θ1 = 2786.
The above observations and the situation in Figure 7.12 show how θ1 yields to
suboptimal results if it is applied to observation sequences from data set Orig-
inal 2. The optimal threshold for Original 2 would have a higher value than
θ1. From the data in Table B.4, we have θ2 = 3128. A possibility to introduce
adaptability in the system would be to parametrize the Gaussian mixture fits
not only on the window size, but also on a measure of traffic that is indicative
of a change in the traffic characteristics. An example for such measure can be
the average throughput in a certain observation period. However, this solution
would introduce an additional approximation in the Gaussian fit, besides the
polynomial approximation of the parameters pw, µw and σw (Section 7.6.1).



7.7 First approach towards adaptability 135

A simpler solution would be to adapt the threshold according to an observed
range of `wt values. We present details about this approach in the following.

A geometrical approach to adaptability

We propose a “geometric method” to adapt the threshold θ. Let us suppose
that the range of `wt values for the data used to train the system is

rold = [min
old

,max
old

].

The system is now analyzing new data for which the range of `wt values is

rnew = [min
new

,max
new

].

We assume that |minnew −minold | ≥ 0 (there might be a shift) and ||rnew| −
|rold|| ≥ 0, where with |r| we indicate the length of the interval r (there might
be a stretch).

We define the lower bound shift ∆1, the upper bound shift ∆2 and the
stretch s:

∆1 = min
new
−min

old
, (7.13)

∆2 = max
new
−max

old
, (7.14)

s = ∆2 −∆1. (7.15)

Figure 7.13 summarizes the introduced measures. Given a threshold θold com-

min old

min new 

max old

max new

!1 !2

!1 s

"_old

"_new

range old

range new

Figure 7.13: Adaptability schema.

puted accordingly to the optimization procedure, we now want to calculate



136 7 Tuning intrusion detection systems

the value of the new threshold θnew, keeping into account that (i) θnew is the
result of the combined action of shift and stretch factors and (ii) the stretch is
not constant. We propose the following formula

θnew = θold + ∆1 + s · ρn, (7.16)

where ρ = θold−minold

maxold−minold
quantifies the relative position of θold in the interval

rold. The exponent n is needed to express the fact that, according to our mea-
surements, the stretch is usually not linear. In our data, in the experiments that
follow we use n = 3.

Experimental results

The experimental results presented in this section aim to verify that the geo-
metric threshold scaling can help in maintaining performance levels similar to
the optimal ones in cases in which the model of normality is outdated. In other
words, we verify that we can use the threshold scaling method instead of the
more costly operation of retraining. To validate the threshold scaling method,
we proceed as follows:

1. we train the model of normality λ on the training data set Set 1 (see Sec-
tion 7.6.1);

2. we measure the performance of the system on the data set Synthetic 2.
This data set contains data that are foreign to the model λ. The time series
in Synthetic 2, indeed, mimic the behavior of the training set Set 2. We
refer to this operation as cross testing;

3. finally, we measure the performance of the system on the data set Syn-
thetic 2 when threshold scaling is applied.

Table 7.9 summarizes the performance results for the test data set Synthetic 2.
Table 7.9 is to be read as follows. For each β/α, the system solves the optimiza-
tion problem and computes, at the best of its knowledge, the optimal threshold,
θopt. Table 7.9 then reports the optimal TP and TN rates for the Synthetic 2 when
tested against a model trained on Set 2. We indicate this model as λ2. These
results are the same of the one in Table 7.5 and are reported here for complete-
ness. Table 7.9 then show the performance in the case in which the model is
trained on Set 1. We indicate this model as λ1. We calculate the optimal TP and
TN rates measured when testing λ1 on Synthetic 2 without applying threshold



7.7 First approach towards adaptability 137

λ2-Synthetic 2 λ1-Synthetic 2 (cross test) λ1-Synthetic 2 (scaling)
β/α θopt TP TN θcr TPcr TNcr θsc TPsc TNsc

0.1 418.39 0.41 0.98 381.59 0.78 0.81 409.13 0.64 0.91
0.2 397.30 0.49 0.97 404.24 0.83 0.75 432.08 0.7 0.88
0.3 386.29 0.53 0.96 430.12 0.86 0.71 459.57 0.74 0.86
0.4 378.47 0.57 0.94 426.11 0.87 0.69 454.74 0.76 0.84
0.5 765.59 0.74 0.89 423.07 0.88 0.67 451.09 0.78 0.82
0.6 856.51 0.78 0.87 451.3 0.89 0.64 481.87 0.79 0.81
0.7 915.30 0.81 0.85 449.13 0.9 0.63 479.27 0.8 0.8
0.8 974.55 0.83 0.84 447.26 0.9 0.62 477.03 0.81 0.79
0.9 1001.75 0.85 0.83 445.63 0.91 0.61 475.06 0.82 0.78
1 1061.59 0.85 0.82 444.16 0.91 0.6 473.31 0.83 0.77

1.5 1106.62 0.88 0.77 438.54 0.92 0.56 466.6 0.85 0.74
2 1124.13 0.91 0.74 464.26 0.93 0.52 498.81 0.86 0.74
4 1055.90 0.95 0.62 454.01 0.95 0.45 486.32 0.89 0.67

Table 7.9: Performance measures for Synthetic 2 (i) tested against the model of
normality λ2, (ii) in case of cross testing and (iii) when the threshold scaling method is

applied.

β/α TPcr − TP TPsc − TP TNcr − TN TNsc − TN

0.1 0.37 0.24 -0.18 -0.07
0.2 0.34 0.22 -0.22 -0.09
0.3 0.32 0.21 -0.24 -0.10
0.4 0.30 0.19 -0.26 -0.10
0.5 0.14 0.04 -0.22 -0.06
0.6 0.11 0.01 -0.22 -0.05
0.7 0.09 -0.01 -0.22 -0.05
0.8 0.07 -0.02 -0.22 -0.05
0.9 0.06 -0.03 -0.22 -0.04
1 0.06 -0.03 -0.22 -0.04

1.5 0.04 -0.03 -0.21 -0.03
2 0.03 -0.05 -0.22 0
4 0 -0.06 -0.17 -0.05

Table 7.10: Differences in performance measures between (i) Synthetic 2 and the cross
testing case and (ii) Synthetic 2 and the threshold scaling case.

scaling (cross testing). Finally, Table 7.9 reports the performance of λ1 when
threshold scaling is applied.



138 7 Tuning intrusion detection systems

Considering the cross testing case, in which no threshold scaling is applied,
from Table 7.9 we observe that the system has good performance w.r.t. the TP
rate, but the TN rate decreases rapidly towards 50%, for increasing β/α. By
comparison with the case in which we use a model trained on Set 2 on the data
set Synthetic 2, we know that the performance for the cross testing is not opti-
mal. This situation can be understood considering the example in Figure 7.11.
The benign and malicious distribution for Set 2 are shifted towards higher val-
ues of `wt , compared to the ones for Set 1. Therefore, the optimal threshold for
Set 1 underestimates the optimal threshold for Set 2, resulting in a lower TN
rate and in a higher TP rate. The threshold scaling compensates the shift by
mapping each θopt to a higher value.

Table 7.10 shows the changes in the performance of our system, expressed
as the difference between the optimal rates (TP and TN), the rates in case of
cross testing (TPcr and TNcr) and the rates when we apply the threshold scaling,
(TPsc and TNsc). Considering the TP rate, we observe that both the cross testing
and the threshold scaling approximates well the original TP values. However,
the threshold scaling has a better approximation for β/α < 0.6. In the case
of the TN rate, however, the threshold scaling yields to a better approximation
of the optimal performance for all the considered values of β/α, with an error
lower than 10%.

7.8 Is a binary classifier enough?

Until now, we described an IDS as a binary classifier. This approach, where
the IDS signals either that an attack is ongoing, or that there is no attacks, is
common in IDS research [14, 13, 158]. However, we can argue if this approach
is optimal given the type of problem instance we want to classify. Each ob-
servation sequence Owt is a set of observations. Each observation is in itself
either malicious or benign, as explained in Section 7.4.1. As a consequence,
there might exist several possible definitions of the actual classes M and B.
For example, we could define an observation sequence as benign only if all its
observations are benign; or, if at least half of its observations are benign. The
definition we proposed in Section 7.4.1 discriminates between the malicious
and benign classes by considering only the youngest observation ot. However,
the drawback of such a definition lies in the fact that the detection system might
wrongly classify observation sequences at the beginning and at the end of an
attack, as discussed in Section 7.4.2. Almost completely benign (malicious) se-
quences for which ot is malicious (benign) are likely to be misclassified.



7.8 Is a binary classifier enough? 139

This observation suggests that there exists a subset of Owt for which we
do not have enough knowledge to perform a correct classification, i.e., a third
class U of undecided instances. In this context, a binary classifier like the one
described in Section 7.4.1, would not be sufficient anymore. To picture it in a
metaphorical manner, think to a traffic light. The green and red lights give you
definite indication of your situation (you are allowed or prohibited to proceed):
these are the classes of malicious and benign observation sequences; the yellow
light warns you that you should expect a change (you should stop soon): this
corresponds to the undecided class.

We present here a possible way to rewrite our classification problem such as
to include undecided instances. Note, however, that this should be considered
just one among many possible extended definitions:

Mw = {Owt | ∀i, t− w + 1 ≤ i ≤ t, oi is malicious},
Bw = {Owt | ∀i, t− w + 1 ≤ i ≤ t, oi is benign},
Uw = {Owt | ∃i, j, t− w + 1 ≤ i, j ≤ t, j 6= i, oi is benign, oj is malicious}.

In the new definition, an observation sequence is benign if all the observation
in it are benign. Similarly, an observation sequence is malicious if all the obser-
vation in it are malicious. The class Uw describes the undecided instances, con-
taining both malicious and benign observations. It is now necessary, however,
to define the behavior of the system while handling observation sequences be-
longing to Uw. A possibility in this sense is to model the statistical properties
of the observation sequences in Uw, as it has been done for Mw and Bw. We
could therefore define a random variable

V w := − log Φ(Owt | λ) for Owt ∈ Uw.

For each Owt ∈ Uw, the measure

P(V w ≤ − log Φ(Owt | λ))

could be the starting point for describing how close the considered observation
sequence is to a benign or malicious sample.

A third actual class leads to the definition of a multi-threshold system. Sim-
ilarly to what we did in (7.7), we could now find the optimal threshold θ1 be-
tween the Xw (benign) and V w (undefined) distributions, as well as the opti-
mal threshold θ2 between the V w (undefined) and Y w (malicious) distributions.
The system would then report:

• that the current observation sequence is a negative sample if `wt < θ1;



140 7 Tuning intrusion detection systems

• that the current observation sequence is a positive sample if `wt ≥ θ2;

• the degree of danger for the current observation sequence if θ1 ≤ `wt < θ2.

More research is needed to assess if a multi-threshold system like the one
sketched here is suitable for detection.

7.9 Summary

In this chapter, we presented a probabilistic approach, in terms of the optimiza-
tion procedure in Table 7.2, to tune the parameters of a simple anomaly-based
IDS that entirely relies on flow information. The optimization procedure we
proposed allows to maximize the correct detection and minimize the errors.
Moreover, the procedure takes explicitly into account high-level policies, in
the form of the relative importance of detecting all the attacks versus keeping
the false alarm rate low. The system parameters we are interested in are the
observation sequence length w and the probability threshold θ. We formalized
the optimization problem as:

maximize
θ,w

α · TN + β · TP,

where α and β express the relative importance of TN and TP.
By varying the ratio β/α, we were able to fine tune the system to favor ei-

ther the detection of all the anomalies (high TP rate) or the detection of attacks
only when they are certain (high TN rate). Our findings also show that β/α has
impact on the detection rate and on how timely the system is able to detect an
attack or recover from it. We believe therefore that, when expressing a usage
policy in terms of the relative importance we put on TN and TP, it should be
taken into account that such a policy affects the system performance in multi-
ple ways. The choice of which metric is most important, and therefore of which
is a suitable policy, is left to the user.

In this chapter, we also took a first step towards adaptability, with the aim
of making the system resilient to changes in the normal situations of the mon-
itored network. Adaptability can be seen as a form of system optimization
over the long term, coping with changes of the traffic features over time. We
proposed an approach to adaptability that avoids the retraining of the system,
operation that can be costly due to the need of ground truth data sets. Our find-
ings showed that it is possible to geometrically scale the threshold θ to ensure
results close to optimal.



7.9 Summary 141

Finally, some directions for future work emerged from our analysis. In par-
ticular, we investigated how the performance of our demo system could be
improved by introducing a third classification class. Our analysis showed that
there might exist cases in which there is not enough information for taking a
definitive decision on the nature of the traffic. We argue therefore that the tradi-
tional concept of a detection system as a binary classifier could not be enough.
In Section 7.8, we envision that a three-class classifier could enrich the detec-
tion system and improve its performance.



142 7 Tuning intrusion detection systems



CHAPTER 8

Conclusions

This chapter presents the conclusions to the research in this thesis and suggests
some directions for future work.

The chapter is organized as follows:

• Section 8.1 presents the overall conclusions to the research in this thesis.
In this section, we also provide answers to the Research Questions that
we have identified in Section 1.3.

• Section 8.2 concludes the thesis by pointing out possible research exten-
sions and directions for further work.

8.1 Overall conclusion

As suggested by the survey of the state of the art in Chapter 3, the research in
flow-based intrusion detection is flourishing with solutions to different aspects
of the detection problem. Researchers focus their attention on diverse attack
types, as well as on different IDS types. However, as often happens, what goes
unsaid is sometimes more interesting than what is in plain light. Two aspects
of the intrusion detection research have therefore caught our attention, mainly
for their absence.

First, despite the variety of solutions for intrusion detection, a common ef-
fort towards IDS evaluation is still missing. As we argued in Chapters 5 and
6, all the intrusion detection solutions have in common the need for public
ground-truth data sets. Ground-truth data sets are time-consuming to create,
require deep domain-knowledge and are rarely shared since they often are pri-
vacy sensitive. In this thesis, we overcame the lack of ground-truth data sets
by creating a flow-based public data set (see Chapter 5) and by proposing a
method to create labeled synthetic time series (see Chapter 6). We believe that



144 8 Conclusions

the community would benefit from a larger number of shared ground-truth
data sets, for both validation and results comparison purposes.

Second, once a new IDS has been proposed, its tuning is often left to the at-
tention and expertise of IT specialists, who have the duty to make operational
decisions. However, nothing but experience, obtained through trial-and-error,
ensures the specialist that he is using the IDS at its optimal levels and that no
better detection results can be achieved. In light of the research conducted in
this thesis, we believe that parameter tuning for intrusion detection should be
addressed in a systematic manner to ensure optimal detection. Note that op-
timality is to be intended in the context of the trade-off between false positive
and false negative, as presented in Figure 1.3. We also believe that optimality
can be situation-specific and high-level policies addressing optimality condi-
tions should be taken into account while tuning the system parameters.

As stated in Section 1.3, the goal of our research was to propose a structured
approach to detect anomalies using flow data and time series. We believe that
such an approach should bring into focus topics as validation and tuning of
IDSs. Our general conclusion is therefore that the research attention, focused
mainly on intrusion detection systems, should be enlarged to include issues that
can be considered as a basis of intrusion detection: publicly available ground-
truth data sets and optimal parameter tuning.

Our research goal has been previously refined into four Research Questions
(see Section 1.3), to which we now provide the following answers.

Research Question 1: What is the state of the art in the field of flow-based
intrusion detection?

In Chapter 3, we presented a survey of the state of the art in flow-based in-
trusion detection. Flow-based intrusion detection is a relatively recent field of
research, whose first contributions date back to 2002. Since then, several ap-
proaches to the problem of detection have been proposed. By analyzing and
categorizing them, we identified the major trends in the field (Section 3.6). We
concluded that the research efforts are at the moment focused on passive and
centralized solutions with, primarily, centralized data collection. Moreover,
we also noticed an evenly shared interest between anomaly-based and misuse-
based systems and a clear attention for real-time systems.



8.1 Overall conclusion 145

Research Question 2: How can traffic anomalies be characterized in time
series derived from flow data?

In our research, we focused on anomaly characterization in time series. Chap-
ter 4 presented an extensive data analysis on flow-data from the University
of Twente and SURFnet, the Dutch national research and education network.
Our analysis leads us to the following conclusions. First, time series of flows,
packets and bytes can be a suitable approach to flow-based intrusion detection,
since they allow data analysis by keeping into account temporal relations be-
tween events, in this case the amount of traffic. Second, to more clearly identify
and characterize anomalies, we suggest to perform an application-based traffic
breakdown. With this we mean that anomalies that are not noticeable by looking
at the whole traffic can be identified by looking at, for example, only SSH or
DNS traffic. Examples of such anomalies are provided in Sections 4.3 and 4.4.
The traffic breakdown can therefore empower flow-based intrusion detection
by reducing the amount of data to be analyzed and by facilitating anomalies
exposure. This observation suggests that a feasible approach to flow-based in-
trusion detection should encompass the design of modular intrusion detection
systems targeting specific applications. Moreover, the combined analysis of
flow, packet and byte time series can strengthen the certainty of the presence
of an attack. However, for certain classes of attacks, the choice to monitor only
some of the aforementioned metrics can be sufficient.

Research Question 3: How can we determine ground-truth information for
flow-based intrusion detection?

We cover two approaches aiming to determine ground-truth information for
flow-based intrusion detection.

First, we investigated the creation of a flow-based data set of security-relevant
events, where each of the attacks has been manually labeled. Building this
type of data set can be challenging. Our research covered several aspects of
the problem, namely which requirements should such a data set meet (Sec-
tion 5.1.3), which infrastructure is suitable for data collection (Section 5.2) and,
finally, how the collected data can be labeled (Section 5.3). Our findings show
that the most promising measurement setup among the analyzed ones is mon-
itoring a single host with enhanced logging capabilities. The information col-
lected permitted us to create a database of both flows and security events (de-
rived by the logs). However, we are aware of the limitations that our approach
entails. In particular, the fact that the collected trace mainly consists of ma-



146 8 Conclusions

licious traffic. As results of the research in Chapter 5, we built and publicly
released a flow-based labeled data set. At the best of our knowledge, our effort
constitutes the first publicly available labeled flow-based traffic trace. The data
set is available in anonymized form at the address: http://traces.simpleweb.org.
Despite this favorable outcome, the lesson learned in Chapter 5 is that, al-
though we limited our experiments to a single host, labeling remains a complex
task that requires human intervention.

In Chapter 6, we investigated the possibility to generate ground-truth in-
formation in an automated manner. We proposed a modeling approach for
flow-based traffic time series based on Hidden Markov Models (HMMs). We
showed that the models that we developed provide a compact representation
of the traffic, where only few states are needed to fully describe the traffic evo-
lution (Section 6.3). Moreover, HMMs can be used for generative purposes,
allowing us to create time series for which the ground truth is known. In Chap-
ter 6, we focused on SSH traffic, that became our running example through the
remainder of the thesis. The models we proposed are inferred by studying
real SSH traffic time series for both attack and normal traffic, captured at the
University of Twente. The research presented in Chapter 6 showed that: (i)
our HMM-based approach can capture the main statistical characteristics of
the original time series (as quantitatively shown in Section 6.4.4); (ii) by quali-
tative investigation, our approach can reproduce time series that resemble the
real traffic (see Section 6.4.5); (iii) as far as ground truth is concerned, we are
now able to create labeled data sets in an automated manner.

Research Question 4: How can we tune the parameters of a flow-based IDS
based on high-level policies?

The performance of an IDS is governed by the trade-off between false positives
and false negatives. In Chapter 7, we proposed a mathematical framework,
in terms of an optimization procedure, to treat such trade-off in a systematic
manner. We tested our procedure on a history-based, probabilistic and anomaly-
based detection system that we introduced in Section 7.2. Such a simple model
became our demo system. We then proposed, in Section 7.5, a probabilistic
optimization procedure to tune parameters of the detection system such as the
history length and the alert threshold with the aim of maximizing the correct
detection (true negative) and minimizing the errors (false positive). A key char-
acteristic of the proposed solution is that it regards optimality according to the
high-level policies, since the choice of which side of the aforementioned trade-
off to favor is case-specific.



8.2 Future research direction 147

Our extensive validation on synthetic and original ground-truth data sets,
in Section 7.6, showed that several optimal solutions are possible. However,
it should also to be noted that, by describing malicious and benign traffic in
terms of probability distributions, as in Figure 7.7, we shed light to the limita-
tion of the proposed system. The optimal true positive and false positive rates
are limited by the overlapping region between the malicious and benign traffic
distributions. The presence of such overlapping region is partly due to the def-
initions of the malicious and benign observation sequences (see Section 7.4.1).
We argue in Section 7.8 that the definitions we chose, although motivated by
the presence of an attack in the analyzed history, might be too strict and can
cause a decrease of the system performance. We therefore suggest that the cur-
rent IDS practice, based on a two-class comparison between the ground truth
(benign and malicious traffic instances) and the system output (positive and
negative traffic instance), might not be the most suitable one for history-based,
flow-based systems.

8.2 Future research direction

We present here some suggestions for further research:

• The focus of this thesis was on modeling and analysis of real data traces.
Therefore, a real-time prototype has not yet been implemented. Building
such a prototype would pose interesting challenges, such as, for example,
the efficient on-the-fly creation of time series. Even though our approach
is based on a Netflow v5 type of information, we believe that a running
prototype would benefit from using newer technologies, such as, for ex-
ample, the extended timeout management of Flexible Netflow. Moreover,
a prototype would compel us to investigate the usability of the system,
similarly to what has been discussed in Appendix C.

• The running example through this thesis has been SSH traffic. There has
been no fundamental decision in choosing SSH over other protocols, be-
side the fact that we found it to be among the most frequent types of
attacks. Nothing in our approach is SSH-specific. This means that our
HMM-based approach could be extended in multiple directions, namely,
attacks other than dictionary attacks, and applications other than SSH.

• The research conducted in Chapter 5 concluded with a publicly avail-
able flow-based ground-truth data set. However, we are aware that this



148 8 Conclusions

promising result has left some unanswered questions. We believe that
a compelling one concerns how to extend the current data collection ar-
chitecture such that we can capture not only malicious traffic, but also
benign traffic. Of course, while doing that, data set requirements such
as described in Section 5.1.3 will still be a “must”, which poses us the
challenge of finding a new approach.

• In this thesis, and in the literature in general, an IDS can be seen as a bi-
nary classifier, which’ output classes are “positive” (attack) or “negative”
(normal traffic). However, in Chapter 7 we argue that this convention
might not be totally satisfactory for probabilistic history-based detection
systems. It would be interesting to investigate if the current evaluation
paradigm can be extended, for example to a three-class classifier, where
the third class would now include instances for which we do not have
enough information to take a decision. Moreover, it would be interesting
to measure the effect of such extension on the overall performance of the
detection system.



APPENDIX A

Hidden Markov Models

Hidden Markov Models (HMMs) are a class of statistical models able to de-
scribe sequences of data resulting from the interaction of several random pro-
cesses.

HMMs are effective in modeling sequential data [17]. Introduced in the
early 1970’s [10], they have been successfully applied to different scientific
fields. Examples are biological sequence analysis [42], speech recognition [122]
and pattern recognition [50]. HMM can be trained on real data and their main
characteristic is the ability to capture the temporal behavior of the observed
processes.

In the field of networking, several contributions rely on the framework of
HMMs. The work of [157] proposed to formalize traffic exchange in terms
of “HMM profiles”, a stochastic structure suited for sequence alignment. The
same models have been successfully used while searching for similar protein
structure in large protein databases [43]. The results in [157] showed that the
models are able to classify traffic sequences at application level. In [28, 27],
the authors proposed a packet-level model of traffic sources based on HMMs.
The authors aim to model packet inter-arrival time and packet size and the
model proved to be effective in application classification. This application is
similar to the traditional use of HMMs in speech recognition: a new sample is
tested against a pool of models, each one encoding a spoken word or a specific
application behavior. The model that more closely approximate the sample,
i.e., the model that has the higher probability to encode the sample, defines the
class of the sample. In this way, a word or an application can be recognized.
Moreover, a second fruitful application of the models in [28, 27] was in traffic
prediction, namely to forecast short-term future traffic behavior.



150 A Hidden Markov Models

A.1 Formal description

Originally introduced as “probabilistic functions of finite state Markov chains”
in the work of Baum et al. [9], HMMs have been later made popular in the
computer science community by the extensive tutorial by Rabiner [122].

Formally, an HMM is a Discrete Time Markov Chain (DTMC) where each
state is augmented with a probability distribution over a finite set of output
symbols. Given a sequence of states Q = q1q2 . . . with associated output sym-
bols O = o1o2 . . . we say Q forms the hidden sequence and O forms the observa-
tion sequence. In this section we introduce the ideas at the basis of HMMs by
means of a running example, in which we show how a basic intrusion detection
system could be modeled as an HMM.

Example: The aim of an anomaly-based network intrusion detection sys-
tem is to detect if any malicious activity is taking place on the monitored
network. We therefore regard an IDS as a black box. At each instant of
time, the black box observes network measurements, for example the num-
ber of flows per second, and provides as output a summary of the safety
state of the network: A if an attack in ongoing and S if the network is safe.

Following Rabiner [122], an HMM is characterized by the elements below:

N: the number of states in the model. The individual states are denoted as
S = {s1, . . . , sN}. The state at time t is indicated with qt. A model can be
defined by the parameter N or by assigning physical significance to each
state. The latter will occur in the models we propose.

M: the number of distinct observation symbols per state. The individual
symbols are denoted as V = {v1, . . . , vM}. The observation symbols are
the output of the model. The output at time t is defined as ot.

A: a state transition probability matrix A = {aij}, where

aij = P(qt+1 = sj | qt = si), 1 ≤ i, j ≤ N.

B: an observation symbol probability distribution B = {bj(v)}, where

bj(v) = P(ot = v | qt = sj), 1 ≤ j ≤ N.

In other words, bj(·) is the probability distribution of the output sym-
bols in the state sj . Each state in the model will describe its own output
symbols distribution.



A.1 Formal description 151

π: the initial state distribution π = {πi}, where

πi = P{q1 = si}.

A model is usually referred to with the compact notation of λ = (A,B, π),
thereby leaving N and M implicit.

Example:

S A

p q1 − p

1 − q

F

bA

F

bB

Figure A.1: Assessing the safety status of a network.

Let us now have a look into the box. We can model the proposed flow-based
detection system with an HMM as follows:

• N = 2. We say that the model is in state S if the network is safe and
in state A if the network is under attack;

• M = K + 1, where we assume K to be the maximum number of
flows/s that we can observe on the network. Therefore V = {0 . . .K}.

• The detection system transits from the state S to the state A when
a malicious activity is detected, and from the state A to the state
S when the malicious activity is over. In this example, we assume
p = 0.9 and q = 0.9.

• since our model is anomaly-based, we abide to the general assump-
tion that malicious activities deviate from the normal behavior of the
observed system, in our case, the network. We indicate with bS(·)
the density function associated to state S, and with bA(·) the density
function associated to state A. In this example, we assume the out-
put symbols in state S to be distributed as the binomial distribution



152 A Hidden Markov Models

B(K + 1, 0.5). Similarly, we assume the output symbols in state A
to be distributed as B(K + 1, 0.9).

• when the detection system becomes operational, the network might
be safe or currently under attack. π indicates the probability that
each one of these events happen in the moment we start monitoring
the network. In our example, we assume πS = 0.8 and πA = 0.2.

A.2 The three basic problems for HMMs

The literature refers to three basics problems that need to be addressed to make
HMMs an effective tool with practical applications [122]. The basic problems
are:

Problem 1 : given an observation sequence O = o1o2 . . . oT and a model λ =
(A,B, π), we want to efficiently compute P(O|λ), that is the probability
of observing the sequence O given the model.

Problem 2 : given an observation sequence O = o1o2 . . . oT and a model λ =
(A,B, π), we want to choose the state sequence Q = q1q2 . . . qT that best
explains the observation sequence, that is, the most probable sequenceQ.

Problem 3 : given a set of observation sequences, X = {(o1,ko2,k . . . oT,k)}k,
that we call training set, we want to infer the model parameters that max-
imize the probability of generating X .

The three basic problems have been long investigated. The rationale behind
Problem 1 is that there might be more that one hidden sequenceQ that will lead
to output O, and enumerating all of them is a costly operation. Baum et al. [11]
developed an iterative solution, known as Forward-Backward procedure, capable
of efficiently compute the probability of an observation sequence.

Example: Let us consider again the flow-based detection system. Let us
consider to have observed the following sequences of flows/s:

O1 = {100, 102, 100, 100, 90, 100, 95, 100, 98, 100},
O2 = {100, 102, 100, 100, 90, 90,200,200, 80, 100}.

O1 has been structured such that it mimics a likely observation sequence.
The component of O1, indeed, are likely to be all generated by the output



A.2 The three basic problems for HMMs 153

distribution of S. On the contrary, O2 mimics the happening of an un-
likely event that raises the number of flows/s, such as an attack. For such
observations sequences, we have, respectively, log(P(O1|λ)) = −32.2,
and log(P(O2|λ)) = −63.7, indicating that O1 has a higher probability
than O2. Note that the logarithmic notation is introduced since P(O =
(o1 . . . on)|λ)→ 0 for n→∞.

Note that, if, for a given observation sequence, the hidden sequence is known,
the calculation of the observing the sequence can be simplified as follow. Given
an observation sequence O = o1o2 . . . ot and the state sequence S = s1s2 . . . st
that generated it, we can calculate

P(O|λ) = πs1bs1(o1)

t∏

i=2

asi−1sibsi(oi).

Also for Problem 2 the assumption holds that more than one hidden sequence
Q might lead to the observation sequence O. However, not all the hidden se-
quences will be equally likely. The Viterbi algorithm [152, 53] efficiently cal-
culates the most likely hidden sequence, that is the hidden sequence Q that
maximizes P(Q,O|λ).

Example: Considering the observation sequences O1 and O2 introduced
in the previous example, the most probable hidden sequences are:

Q1 = {S,S,S,S,S,S,S,S,S,S},
Q2 = {S,S,S,S,S,S,A,A,S,S}.

Finally, Problem 3 defines the case in which the model parameters are learned
from a set of observation sequences. Solving Problem 3 is fundamental to tune
an HMM to a specific problem and a specific training set. In particular, it is fun-
damental to estimate the correct transition probabilities. Parameter estimation
for HMMs is a well-studied field, and several approaches have been proposed,
such as the Baum-Welch algorithm [10] or the simulated annealing method of
[3]. However, if the hidden sequence is known, as for applications in which
there exists additional domain knowledge, it is possible to train the models in
a simpler way, i.e., by estimating the transition probabilities as:

aij =
|{transitions from si to sj}|
|{transitions from si}|

.



154 A Hidden Markov Models



APPENDIX B

Addendum on optimization procedure
validation

This appendix is meant to support Chapter 7. It reports extra results on (i) the
relations between the Gaussian Mixtures parameters and the window size, in
Section B.1 and (ii) the optimization procedure, in Section B.2.

B.1 Gaussian fits and window size

In Section 7.5.2, we indicated that a possibility to generalize the relation be-
tween the Gaussian Mixture parameters pw, µw and σw and the window size
w is by means of polynomial functions. When validating our approach, our
findings show that µw is a linear function of w, σw can be approximated by a
polynomial of degree 3 and pw by a polynomial of degree 2.

In this section, we present an example of polynomial fits for the Gaussian
Mixture parameters in the case of the data set Synthetic 2. For this data set,
Gaussian Mixtures with 2 components yield excellent fits for both the benign
and malicious distributions. In Figures B.1, B.2 and B.3, we show how the
Gaussian Mixture parameters can be approximated by polynomial curves, in
the case of the means µw, the standard deviations σw and the weights of Gaus-
sian mixture components, respectively. In the figures, we present the values
of the parameters, computed at sampled window sizes, and the polynomial
curves. We indicated with (·)B1 and (·)B2 the parameters relatively to the first
and second benign Gaussian component, respectively. Similarly, (·)M1 and
(·)M2 indicate the parameters of the malicious Gaussian components. As sug-
gested by the results in Figures B.1, B.2 and B.3, we can closely approximate
the Gaussian Mixtures parameters with polynomial curves. In Table B.1, we
presents the average relative errors between the values of the Gaussian Mix-



156 B Addendum on optimization procedure validation

ture parameters and the values provided by the fitting polynomial, measured
at the sampled window sizes. In the case of the means µw, we achieve an aver-
age relative error lower than 2%. The error for the standard deviations σw is in
overall lower than 2.3%. Finally, the components weights pw show an average
relative errors lower than 5%.

Par. Avg. rel. error (%) Par. Avg. rel. error (%) Par. Avg. rel. error (%)
µX1 1.9 σX1 0.50 pX1 4.9
µX2 0.11 σX2 0.50 pX2 0.64
µY 1 0.85 σY 1 1.32 pY 1 3.50
µY 2 0.69 σY 2 2.30 pY 2 1.95

Table B.1: Average relative error (%) between the Gaussian Mixture parameters and
the fitting polynomial functions (data set Synthetic 2).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 100  200  300  400  500  600  700  800  900  1000

µ

Window size

µX1
µX2
µY1
µY2

Figure B.1: Gaussian Mixture means for the data set Synthetic 2 and polynomial fits.



B.1 Gaussian fits and window size 157

 0

 100

 200

 300

 400

 500

 600

 100  200  300  400  500  600  700  800  900  1000

!

Window size

!X1
!X2
!Y1
!Y2

Figure B.2: Gaussian Mixture standard deviations for the data set Synthetic 2 and
polynomial fits.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100  200  300  400  500  600  700  800  900  1000

p

Window size

pX1pX2pY1pY2

Figure B.3: Weight of the Gaussian Mixture components for the data set Synthetic 2 and
polynomial fits.



158 B Addendum on optimization procedure validation

B.2 Optimization errors

This section reports results that validate the goodness of the Gaussian Mixture
fits on which the optimization procedure in Chapter 7 is based. For details
about our validation approach, see Section 7.6.2.

Empirical Analytical Error (%)
w TN TP θ TN TP θ TN TP θ

100 0.84 0.73 347 0.86 0.76 352.10 2.20 2.92 1.47
200 0.82 0.82 669 0.84 0.81 673.86 2.54 0.94 0.73
300 0.85 0.83 1010 0.83 0.84 997.04 2.39 1.00 1.28
400 0.79 0.88 1307 0.82 0.84 1319.21 3.62 3.53 0.93
500 0.77 0.88 1626 0.80 0.85 1639.53 3.45 3.90 0.83
600 0.77 0.88 1959 0.78 0.85 1957.86 0.59 2.33 0.06
700 0.76 0.86 2288 0.75 0.86 2274.46 0.89 0.58 0.59
800 0.70 0.88 2570 0.72 0.87 2589.83 2.70 2.17 0.77
900 0.69 0.86 2902 0.69 0.87 2904.65 0.06 0.76 0.09
1000 0.65 0.87 3189 0.65 0.88 3219.65 1.02 0.95 0.96

Table B.2: Empirical vs. theoretical results for the optimization problem (Synthetic 2).

The results in Tables B.2, B.3 and B.4 present the optimization errors for the
additional data sets: Synthetic 2, Original 1 and Original 2, respectively.

Empirical Analytical Error (%)
w TN TP θ TN TP θ TN TP θ

100 0.53 0.81 263 0.47 0.80 259.35 10.53 0.48 1.39
200 0.56 0.83 532 0.51 0.85 529.23 8.70 2.59 0.52
300 0.59 0.83 804 0.55 0.86 805.74 6.17 3.16 0.22
400 0.60 0.84 1077 0.57 0.86 1084.93 3.92 2.44 0.74
500 0.62 0.85 1358 0.59 0.86 1365.92 3.57 1.94 0.58
600 0.62 0.86 1633 0.61 0.87 1648.31 1.50 1.34 0.94
700 0.63 0.86 1916 0.62 0.87 1931.79 1.09 1.71 0.82
800 0.62 0.86 2181 0.63 0.87 2216.15 1.96 1.26 1.61
900 0.66 0.84 2501 0.64 0.88 2501.17 2.97 5.28 0.01

1000 0.65 0.86 2758 0.65 0.89 2786.64 0.40 2.69 1.04

Table B.3: Empirical vs. theoretical results for the optimization problem (Original 1)

The results confirm the findings of Section 7.6.2, i.e., that the approach,
based on fitted Gm random variables, closely approximates the results one



B.2 Optimization errors 159

Empirical Analytical Error (%)
w TN TP θ TN TP θ TN TP θ

100 0.84 0.73 347 0.65 0.55 318.42 22.42 25.55 8.24
200 0.82 0.82 669 0.58 0.67 611.21 29.49 18.52 8.64
300 0.85 0.83 1010 0.58 0.69 916.26 31.09 16.94 9.28
400 0.79 0.88 1307 0.60 0.69 1225.44 23.52 21.57 6.24
500 0.77 0.88 1626 0.62 0.68 1537.65 19.52 23.08 5.43
600 0.77 0.88 1959 0.64 0.67 1852.39 17.05 23.18 5.44
700 0.76 0.86 2288 0.66 0.66 2169.26 12.98 23.23 5.19
800 0.70 0.88 2570 0.68 0.66 2487.84 3.64 25.82 3.20
900 0.69 0.86 2902 0.69 0.65 2807.68 0.68 24.92 3.25

1000 0.65 0.87 3189 0.71 0.64 3128.34 9.41 25.99 1.90

Table B.4: Empirical vs. theoretical results for the optimization problem (Original 2).

would have found using empirical distributions. For the data set Synthetic 2,
the relative error for TN, TP and θ is for all the considered cases lower than 4%.
In the case of the original data sets, for Original 1, the relative error for TP and
TN is lower than 4% for w ≥ 400. For w < 400, we observe an error lower
than 10%. For the data set Original 2, on the other hand, we observe a higher
error in TP and TN; that for w = 300 is up to 30%. The error in approximating
θ remains lower than 10%. Such higher errors are due to the polynomial fits
used to approximate the parameters of Xw and Y w, as functions of w.



160 B Addendum on optimization procedure validation



APPENDIX C

Can we improve the performance of the
detection system?

The focus of Chapter 7 has been on the optimization of detection system pa-
rameters. We therefore do not propose a deployed intrusion detection system,
but we just introduce a simple system that would allow us to explain our ideas
regarding optimization. The question may arise, however, whether such a sys-
tem could be used in practice. In this appendix, we propose a possible exten-
sion to the system to improve its performance in case it would report directly
to a human operator.

The limitation of the detection system is the high FP = 1 − TN rate. For
example, for α = β = 1 and the data set Synthetic 1, we measured FP = 0.05.
Since the system relies on a sliding window mechanism with a step of 1 second,
the system checks the condition for malicious traffic `wt ≤ θ with a rate of 1
time per second. Consequently, on the long term, the system will report 3 false
positives per minute. From a user perspective, such a rate of false positive is
likely to be too high.

A possibility to decrease the FP rate can be found in extending the current
setup with an alert management module. The aim of such a module would be
to filter spurious alerts and to notify the user only when the system gains suf-
ficient certainty about the presence of an attack. The rationale behind such a
module is that situations other than an attack might influence `wt . An example
is presented in Figure 7.4, where `wt appears to increase regularly at 6 hours
intervals. A first step towards an alert management system would be to inves-
tigate how the observation sequences labeled as P are distributed over time.
We expect an attack to create a steady sequence of consecutive P observations,
and a temporary anomaly to soon return to normality. If this condition is met,
it could pave the way to a simple alert management system that would ag-
gregate sequences of alerts into a single notification to the user. The proposed



162 C Can we improve the performance of the detection system?

solution is likely to decrease the rate of false positive perceived by the final
user. However, alert filtering and grouping might have negative consequences
as well. For example, it could introduce a delay in the notification of an attack,
to be added to the already existing detection lag measured in Section 7.6.3.
As often in the case of anomaly based intrusion detection, decisions regarding
the desired performance constitute a trade-off. The relative importance of the
performance measures is therefore to be decided according to the specific case
study and the desired performance.



Bibliography

[1] M. Almgren, E. L. Barse, and E. Jonsson. Consolidation and evaluation of IDS
taxonomies. In Proc. of 8th Nordic Workshop on Secure IT systems (NordSec ’03),
2003.

[2] N. Alon, N. Duffield, C. Lund, and M. Thorup. Estimating arbitrary subset sums
with few probes. In Proc. of the 24th ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems (PODS ’05), pages 317–325, 2005.

[3] C. Andrieu and A. Doucet. Simulated Annealing for Maximum A Posteriori Pa-
rameter Estimation of Hidden Markov Models. IEEE Transactions on Information
Theory, 46(3):994–1004, 2000.

[4] A.Wagner, T. Dübendorfer, B. Plattner, and R. Hiestand. Experiences with worm
propagation simulations. In Proc. of 2003 ACM workshop on Rapid Malcode (WORM
’03), pages 34–41, 2003.

[5] S. Axelsson. Intrusion detection systems: A survey and taxonomy. Technical
Report 99-15, Chalmers Univ., 2000.

[6] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling. The nepenthes plat-
form: An efficient approach to collect malware. In Proc. of the 9th Int. Symp. on
Recent Advances in Intrusion Detection (RAID ’06), pages 165–184, 2006.

[7] R. Barbosa and A.Pras. Intrusion Detection in SCADA Networks. In Proc. of 4th
Int. Conf. on Autonomous Infrastructure, Management and Security (AIMS ’10), pages
163–166, 2010.

[8] P. Barford and D. Plonka. Characteristics of network traffic flow anomalies. In
Proc. of the 1st ACM SIGCOMM Workshop on Internet Measurement (IMW ’01),
pages 69–73, 2001.

[9] L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite
state markov chains. Annals of Mathematical Statistics, 37(6):1554–1563, 1966.

[10] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A Maximization Technique Oc-
curring in the Statistical Analysis of Probabilistic Functions of Markov Chains.
Annals of Mathematical Statistics, 41(1):164–171, 1970.

[11] L. E. Baum and G. R. Sell. Growth transformations for functions on manifolds.
Pacific Journal of Mathematics, 27(2):211–227, 1968.



164 BIBLIOGRAPHY

[12] H. Bhaskar, D. C. Hoyle, and S. Singh. Machine learning in bioinformatics: A brief
survey and recommendations for practitioners. Computers in Biology and Medicine,
36(10):1104–1125, 2006.

[13] D. Bolzoni. Revisiting Anomaly-based Network Intrusion Detection Systems. PhD
thesis, University of Twente, Enschede, June 2009.

[14] D. Bolzoni, E. Zambon, S. Etalle, and P. H. Hartel. Poseidon: a 2-tier anomaly-
based network intrusion detection system. In 4th IEEE Int. Information Assurance
Workshop (IWIA ’06), pages 144–156, 2006.

[15] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina. Impact of
packet sampling on anomaly detection metrics. In Proc. of the 6th ACM SIGCOMM
Conf. on Internet Measurement (IMC ’06), pages 159–164, 2006.

[16] P. Buchholz. An EM-Algorithm for MAP fitting from real traffic data. In Computer
Performance - Modelling Techniques and Tools, pages 218–236, 2003.

[17] F. Camastra and A. Vinciarelli. Markovian Models for Sequential Data. Springer
London, 2008.

[18] Cisco.com. Cisco IOS Flexible NetFlow White Paper. http://www.cisco.com,
Sept. 2010.

[19] Cisco.com. Cisco IOS NetFlow Configuration Guide, Release 12.4.
http://www.cisco.com, Sept. 2010.

[20] Citrix XenServer 5. http://www.citrix.com/, Sept. 2010.

[21] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Informa-
tional), July 2008.

[22] B. Claise. Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of IP Traffic Flow Information. RFC 5101 (Proposed Standard), July
2008.

[23] B. Clarke, E. Fokoué, and H. H. Zhang. Supervised learning: Partition methods.
In Principles and Theory for Data Mining and Machine Learning. Springer New York,
2009.

[24] M. Collins and M. Reiter. Hit-List Worm Detection and Bot Identification in Large
Networks Using Protocol Graphs. In Proc. of 10th Int. Symposium on Recent Ad-
vances in Intrusion Detection (RAID ’07), pages 276–295, 2007.

[25] CRAWDAD: Community Resource for Archiving Wireless Data At Dartmouth.
http://crawdad.cs.dartmouth.edu/, Sept. 2010.

[26] D. Dagon, G. Gu, and C. Lee. A taxonomy of botnet structures. In Botnet Detection.
Springer US, 2007.

[27] A. Dainotti, W. de Donato, A. Pescape, and P. Rossi. Classification of Network
Traffic via Packet-Level Hidden Markov Models. In Proc. of IEEE Global Telecom-
munications Conference (GLOBECOM 2008), pages 1–5, 2008.



BIBLIOGRAPHY 165

[28] A. Dainotti, A. Pescapé, P. S. Rossi, F. Palmieri, and G. Ventre. Internet traffic
modeling by means of Hidden Markov Models. Computer Networks, 52(14):2645–
2662, 2008.

[29] A. M. Dan Pelleg. X-means: Extending K-means with Efficient Estimation of the
Number of Clusters. In Proc. of the 17th Int. Conf. on Machine Learning, pages 727–
734, 2000.

[30] DatCat: Internet Measurement Data Catalog. http://imdc.datcat.org, Sept. 2010.
[31] W. de Bruijn, A. Slowinska, K. van Reeuwijk, T. Hruby, L. Xu, and H. Bos. Safe-

Card: A Gigabit IPS on the Network Card. In Proc. of the 9th Int. Symp. on Recent
Advances in Intrusion Detection (RAID ’06), pages 311–330, 2006.

[32] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion-detection
systems. Computer Networks, 31(9):805–822, 1999.

[33] H. Debar, M. Dacier, and A. Wespi. A revised taxonomy for intrusion detection
systems. Annales des Telecommunications, 55(7–8):361–378, 2000.

[34] H. Debar and J. Viinikka. Intrusion detection: Introduction to intrusion detection
and security information management. In Foundations of Security Analysis and
Design III, pages 207–236, 2005.

[35] Diadem Firewall European Project. http://www.diadem-firewall.org, Sept. 2010.
[36] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Operational experiences

with high-volume network intrusion detection. In Proc. of the 11th ACM Conf. on
Computer and Communications Security (CCS ’04), pages 2–11, 2004.

[37] F. Dressler, W. Jaegers, and R. German. Flow-based Worm Detection using Corre-
lated Honeypot Logs. In Proc. of 15th GI/ITG Fachtagung Kommunikation in Verteil-
ten Systemen (KiVS ’07), pages 181–186, 2007.

[38] T. Dubendorfer and B. Plattner. Host behaviour based early detection of worm
outbreaks in internet backbones. In Proc. of the 14th IEEE Int. Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprise (WETICE ’05), pages
166–171, 2005.

[39] T. Dübendorfer, A. Wagner, and B. Plattner. A framework for real-time worm
attack detection and backbone monitoring. In Proc.of 1st IEEE Int. Workshop on
Critical Infrastructure Protection (IWCIP’ 05), pages 3–12, Nov. 2005.

[40] N. Duffield, C. Lund, and M. Thorup. Flow sampling under hard resource con-
straints. ACM SIGMETRICS Performance Evaluation Review, 32(1):85–96, 2004.

[41] N. Duffield, C. Lund, and M. Thorup. Learn more, sample less: control of volume
and variance in network measurement. IEEE Transactions on Information Theory,
51(5):1756–1775, 2005.

[42] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analy-
sis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
1998.



166 BIBLIOGRAPHY

[43] S. R. Eddy. Profile hidden markov models. Bioinformatics Review, 14(9):755–763,
1998.

[44] C. Estan and G. Varghese. New directions in traffic measurement and account-
ing: Focusing on the elephants, ignoring the mice. ACM Transactions on Computer
Systems, 21(3):270–313, 2003.

[45] J. Estévez-Tapiador, P. Garcia-Teodoro, and J. E. Dı́az-Verdejo. Anomaly detection
methods in wired networks: a survey and taxonomy. Computer Communications,
27(16):1569–1584, 2004.

[46] Z. Fadlullah, T. Taleb, N. Ansari, K. Hashimoto, Y. Y. Miyake, Y. Nemoto, and
N.Kato. Combating Against Attacks on Encrypted Protocols. In IEEE Int. Conf.
on Communications (ICC ’07)., pages 1211–1216, 2007.

[47] T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–
874, 2006.

[48] A. Feldmann, J. Rexford, and R. Cáceres. Efficient policies for carrying web traffic
over flow-switched networks. IEEE/ACM Transactions on Networking, 6(6):673–
685, 1998.

[49] Fiber to the Home Council Europe. http://www.ftthcouncil.eu/, July 2010.

[50] G. A. Fink. Markov Models for Pattern Recognition: From Theory to Applications.
Springer-Verlag New York, Inc., 2008.

[51] T. Fioreze. Self-management of hybrid optical and packet switching networks. PhD
thesis, University of Twente, Feb.

[52] T. Fioreze, M. O. Wolbers, R. van de Meent, and A. Pras. Finding elephant flows
for optical networks. In Proc. of 10th IFIP/IEEE Int. Symposium on Integrated Net-
work Management (IM ’07), pages 627–640, 2007.

[53] J. Forney, G.D. The viterbi algorithm. Proc. of the IEEE, 61(3):268–278, March 1973.

[54] M. Fullmer. Flow-tools. http://www.splintered.net/sw/flow-tools/, Sept. 2010.

[55] M. Gao, K. Zhang, and J. Lu. Efficient packet matching for gigabit network in-
trusion detection using TCAMs. In Proc. of 20th Int. Conf. on Advanced Information
Networking and Applications (AINA’06), pages 249–254, 2006.

[56] Y. Gao, Z. Li, and Y. Chen. A DoS Resilient Flow-level Intrusion Detection Ap-
proach for High-speed Networks. In Proc. of 26th IEEE Int. Conf. on Distributed
Computing Systems (ICDCS’06), page 39, 2006.

[57] M. Garuba, C. Liu, and D. Fraites. Intrusion techniques: Comparative study of
network intrusion detection systems. In Proc. of 5th Int. Conf. on Information Tech-
nology: New Generations (ITNG ’08), pages 592–598, 2008.

[58] C. Gates, J. McNutt, J. Kadane, and M. Kellner. Scan Detection on Very Large
Networks Using Logistic Regression Modeling. In Proc. of 11th IEEE Symposium
on Computers and Communications (ISCC ’06), pages 402–408, 2006.



BIBLIOGRAPHY 167

[59] GÉANT. Géant. http://www.geant.net, Sept. 2010.

[60] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering Analysis of Net-
work Traffic for Protocol- and Structure-Independent Botnet Detection. In Proc. of
17th USENIX Security Symposium (USENIX Security ’08), pages 139–154, 2008.

[61] M. Gurcan, L. Boucheron, A. Can, A. Madabhushi, N. Rajpoot, and B. Yener.
Histopathological image analysis: A review. IEEE Reviews in Biomedical Engineer-
ing, 2:147 –171, 2009.

[62] R. Gusella. Characterizing the variability of arrival processes with indexes of
dispersion. IEEE Journal on Selected Areas in Communications, 9(2):203 –211, 1991.

[63] P. Haag. Nfdump. http://nfdump.sourceforge.net/, Sept. 2010.

[64] P. Haag. Nfsen: Netflow sensor. http://nfsen.sourceforge.net, Sept. 2010.

[65] J. Haines, R. Lippmann, D. Fried, M. Zissman, E. Tran, and S. Boswell. 1999
DARPA Intrusion Detection Evaluation: Design and Procedures. Technical Re-
port TR 1062, MIT Lincoln Laboratory, 2001.

[66] L. R. Halme and R. K. Bauer. AINT misbehaving – A taxonomy of anti-intrusion
techniques. In Proc. of 18th NIST-NCSC National Information Systems Security Con-
ference, pages 163–172, 1995.

[67] S. Hansman and R. Hunt. A taxonomy of network and computer attacks. Com-
puters & Security, 24(1):31–43, 2005.

[68] G. He and J. C. Hou. An in-depth, analytical study of sampling techniques for
self-similar internet traffic. In Proc. of the 25th IEEE Int. Conf. on Distributed Com-
puting Systems (ICDCS ’05), pages 404–413, 2005.

[69] P. Horn. Autonomic computing: IBM’s Perspective on the State of Information
Technology. http://www.research.ibm.com, 2001.

[70] J. D. Howard. An analysis of security incidents on the Internet 1989-1995. PhD thesis,
Carnegie Mellon University - UMI Order No. GAX98-02539, 1998.

[71] V. Igure and R. Williams. Taxonomies of attacks and vulnerabilities in computer
systems. IEEE Communications Surveys & Tutorials, 10(1):6–19, 2008.

[72] InMon Corporation. sflowtrend. http://www.inmon.com, Sept. 2010.

[73] International Telecommunication Union. Ict statistics. http://www.itu.int/ITU-
D/ict/, Sept. 2010.

[74] Internet 2. Internet 2 research network. http://www.internet2.edu/, Sept. 2010.

[75] IsarNet Software Solutions. Isarflow. http://isarflow.com/, Sept. 2010.

[76] E. Izkue and E. Magaña. Sampling time-dependent parameters in high-speed
network monitoring. In Proc. of the ACM Int. workshop on Performance monitoring,
measurement, and evaluation of heterogeneous wireless and wired networks (PM2HW2N
’06), pages 13–17, 2006.



168 BIBLIOGRAPHY

[77] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale botnet detection and char-
acterization. In Proc. of the 1st Conf. on First Workshop on Hot Topics in Understanding
Botnets (HotBots’07), pages 1–8, 2007.

[78] M.-S. Kim, H.-J. Kong, S.-C. Hong, S.-H. Chung, and J. Hong. A flow-based
method for abnormal network traffic detection. In Proc. of IEEE/IFIP Network Op-
erations and Management Symposium (NOMS’04), pages 599–612, 2004.

[79] J. Kinable. Detection of network scan attacks using flow data. In Proc. of the 8th
Twente Student Conference on IT, 2008.

[80] R. Koch and G. Dreo. Fast learning neural network intrusion detection system. In
Proc. of 3rd Int. Conf. on Autonomous Infrastructure, Management and Security (AIMS
’09), pages 187–190, June 2009.

[81] C. Kruegel, F. Valeur, and G. Vigna. Intrusion Detection and Correlation: Challenges
and Solutions. Springer-Verlag Telos, 2004.

[82] H. Lai, S. Cai, H. Huang, J. Xie, and H. Li. A parallel intrusion detection system
for high-speed networks. In Proc. of the 2nd Int. Conf. Applied Cryptography and
Network Security (ACNS’04), pages 439–451, May 2004.

[83] A. Lakhina, M. Crovella, and C. Diot. Characterization of network-wide anoma-
lies in traffic flows. In Proc. of 4th ACM SIGCOMM Conf. on Internet measurement
(IMC ’04), pages 201–206, 2004.

[84] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anoma-
lies. In Proc. of the Conf. on Applications, technologies, architectures, and protocols for
computer communications (SIGCOMM ’04), pages 219–230, 2004.

[85] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature
distributions. ACM SIGCOMM Computer Communication Review, 35(4):217–228,
2005.

[86] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk, and N. Taft.
Structural analysis of network traffic flows. In Proc. of the joint Int. Conf. on
Measurement aand modeling of computer systems (SIGMETRICS ’04/Performance ’04),
pages 61–72, 2004.

[87] A. Lazarevic, V. Kumar, and J. Srivastava. Intrusion detection: A survey. In
Managing Cyber Threats. Springer US, 2005.

[88] A. Lazarevic, A. Ozgur, L. Ertoz, J. Srivastava, and V. Kumar. A comparative
study of anomaly detection schemes in network intrusion detection. In Proc. of
the 3rd SIAM Int. Conf. on Data Mining, pages 1–14, 2003.

[89] M. Lee, T. Shon, K. Cho, M. Chung, J. Seo, and J. Moon. An Approach for Classi-
fying Internet Worms Based on Temporal Behaviors and Packet Flows. In Proc. of
3rd Int. Conf. on Intelligent Computing (ICIC ’07), pages 646–655, 2007.



BIBLIOGRAPHY 169

[90] W. Lee, C. Wang, and D. Dagon. Botnet Detection. Countering the Largest Security
Threat. Springer US, 2008.

[91] P. Li, M. Salour, and X. Su. A survey of internet worm detection and containment.
IEEE Communications Surveys & Tutorials, 10(1):20–35, 2008.

[92] Z. Li, Y. Gao, and Y. Chen. Towards a high-speed router-based anomaly/intrusion
detection system. http://conferences.sigcomm.org/sigcomm/2005/poster-
121.pdf, 2005.

[93] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber,
S.E.Webster, D. Wyschogrod, R. Cunningham, and M. Zissman. Evaluating intru-
sion detection systems: the 1998 DARPA off-line intrusion detection evaluation.
In Proc. of the DARPA Information Survivability Conf. and Exposition (DISCEX ’00),
pages 12–26, 2000.

[94] R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das. The 1999 DARPA off-line
intrusion detection evaluation. Computer Networks, 34(4):597–595, 2000.

[95] W. J. Liu and J. Gong. Double sampling for flow measurement on high speed
links. Computer Networks, 52(11):2221–2226, 2008.

[96] C. Livadas, R. Walsh, D. Lapsley, and W. Strayer. Using machine learning tech-
niques to identify botnet traffic. In Proc. of the 31st IEEE Conf. on Local Computer
Networks (LCN’06), pages 967–974, 2006.

[97] M. Mahoney and P. Chan. An Analysis of the 1999 DARPA/Lincoln Laboratory
Evaluation Data for Network Anomaly Detection. In Proc. of the 6th Int. Sympo-
sium on Recent Advances in Intrusion Detection (RAID ’03), pages 220–237, 2003.

[98] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang. Is sampled data suffi-
cient for anomaly detection? In Proc. of the 6th ACM SIGCOMM Conf. on Internet
Measurement (IMC ’06), pages 165–176, 2006.

[99] V. Marinov and J. Schönwälder. Design of a stream-based IP flow record query
language. In Proc. of 20th IFIP/IEEE Int. Workshop on Distributed Systems: Opera-
tions and Management (DSOM ’09), pages 15–28, 2009.

[100] J. McHugh. Testing Intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln Labora-
tory. ACM Transactions on Information and System Security, 3(4):262–294, 2000.

[101] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman. An overview of issues
in testing intrusion detection systems. Technical Report NIST IR 7007, National
Insititute of Standards and Technology, 2003.

[102] METROSEC. Metrology for security and quality of service. http://spiderman-
2.laas.fr/METROSEC/, Sept. 2010.

[103] MOME project. http://www.ist-mome.org, Sept. 2010.



170 BIBLIOGRAPHY

[104] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside
the slammer worm. IEEE Security & Privacy, 1(4):33–39, 2003.

[105] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage. Inferring Inter-
net denial-of-service activity. ACM Transactions on Computer Systems, 24(2):115–
139, 2006.

[106] C. Morariu, P. Racz, and B. Stiller. Design and Implementation of a Distributed
Platform for Sharing IP Flow Records. In Proc. of the 20th IFIP/IEEE Int. Workshop
on Distributed Systems: Operations and Management (DSOM ’09), 2009.

[107] C. Morariu and B. Stiller. DiCAP: Distributed Packet Capturing architecture for
high-speed network links. In Proc. of the 33rd IEEE Conf. on Local Computer Net-
works (LCN ’08), Oct. 2008.

[108] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto. Identifying Elephant Flows
Through Periodically Sampled Packets. In Proc. of the 4th ACM SIGCOMM Conf.
on Internet Measurement (IMC ’04), pages 115–120, 2004.

[109] B. Morin and L. Mé. Intrusion detection and virology: an analysis of differences,
similarities and complementariness. Journal in Computer Virology, 3(1):39–49, 2007.

[110] G. Münz and G. Carle. Real-time Analysis of Flow Data for Network Attack De-
tection. In Proc. of 10th IFIP/IEEE Int. Symposium on Integrated Network Management
(IM’07), pages 100–108, 2007.

[111] T. Oetiker. MRTG - The Multi Router Traffic Grapher.
http://oss.oetiker.ch/mrtg/, Sept. 2010.

[112] OpenSSH. http://www.openssh.com/, Sept. 2010.

[113] P. Owezarski. A database of anomalous traffic for assessing profile based IDS. In
Proc. of the 2nd Int. Workshop on Traffic Monitoring and Analysis (TMA ’10), pages
59–72, 2010.

[114] P. Owezarski, J. Mazel, and Y. Labit. 0day anomaly detection made possible
thanks to machine learning. In Proc. of the 8th International Conference (WWIC ’10),
pages 327–338, May 2010.

[115] A. Patcha and J.-M. Park. An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Computer Networks, 51(12):3448–3470,
2007.

[116] V. Paxson. Bro: a system for detecting network intruders in real-time. Computer
Networks, 31(23–24):2435–2463, 1999.

[117] F. Pouget and M. Dacier. Honeypot-based forensics. In Asia Pacific Information
technology Security Conference (AusCERT ’04), May 2004.

[118] proftp. http://www.proftpd.org/, Sept. 2010.

[119] PSAMP. Packet Sampling (PSAMP) working group.
http://www.ietf.org/html.charters/psamp-charter.html, Sept. 2010.



BIBLIOGRAPHY 171

[120] J. Quittek, S. Bryant, B. Claise, P. Aitken, and J. Meyer. Information Model for IP
Flow Information Export. RFC 5102 (Proposed Standard), Jan. 2008.

[121] J. Quittek, T. Zseby, B. Claise, and S. Zander. Requirements for IP Flow Informa-
tion Export (IPFIX). RFC 3917 (Informational).

[122] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. of the IEEE, 77(2):257–286, 1989.

[123] M. Roesch. Snort, intrusion detection system. http://www.snort.org, Sept. 2010.

[124] B. Sangster, T. O’Connor, T. Cook, R. Fanelli, E. Dean, W. J. Adams, C. Morrell,
and G. Conti. Toward Instrumenting Network Warfare Competitions to Generate
Labeled Datasets. In Proc. of the 2nd Workshop on Cyber Security Experimentation
and Test (CSET ’09), 2009.

[125] SANS Institute. Top-20 2007 Security Risks (2007 Annual Update). www.sans.org,
Sept. 2010.

[126] J. Sansom and P. Thomson. Fitting hidden semi-Markov models to breakpoint
rainfall data. Journal of Applied Probability, 38A:142–157, 2001.

[127] A. Scherrer, N. Larrieu, P. Owezarski, P. Borgnat, and P. Abry. Non-gaussian and
long memory statistical characterizations for internet traffic with anomalies. IEEE
Transactions on Dependable and Secure Computing, 4(1):56 –70, 2007.

[128] R. Schweller, L. Zhichun, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. Dinda, M.-Y. Kao,
and G. Memik. Reverse hashing for high-speed network monitoring: Algorithms,
evaluation, and applications. In Proc. of the 25th IEEE Int. Conf. on Computer Com-
munications (INFOCOMM ’06), pages 1–12, 2006.

[129] F. Sebastiani. Machine learning in automated text categorization. ACM Computing
Surveys, 34(1):1–47, 2002.

[130] N. Sebe, I. Cohen, A. Garg, and T. S. Huang. Machine Learning in Computer Vision
(Computational Imaging and Vision). Springer-Verlag New York, Inc., 2005.

[131] C. E. Shannon. A mathematical theory of communication. The Bell System Techni-
cal Journal, 27(3):379–423, 1948.

[132] Simpleweb trace repository. http://traces.simpleweb.org, Sept. 2010.

[133] Softflowd. http://www.mindrot.org/projects/softflowd/, Sept. 2010.

[134] Spamhaus.org. Effective spam filtering.
http://www.spamhaus.org/whitepapers/effective filtering.html, Sept. 2010.

[135] S. M. Specht and R. B. Lee. Distributed Denial of Service: Taxonomies of Attacks,
Tools, and Countermeasures. In Proc. of the ISCA 17th Int. Conf. on Parallel and
Distributed Computing Systems (ISCA PDCS ’04), pages 543–550, 2004.

[136] A. Sperotto, R. Sadre, and A. Pras. Anomaly Characterization in Flow-Based
Traffic Time Series. In Proc. of the 8th IEEE Int. Workshop on IP Operations and
Management (IPOM ’08), pages 15–27, 2008.



172 BIBLIOGRAPHY

[137] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller. An
overview of ip flow-based intrusion detection. IEEE Communications Surveys &
Tutorials, 12(3):343–356, 2010.

[138] A. Sperotto, G. Vliek, R. Sadre, and A. Pras. Detecting spam at the network level.
In Proc. of the 15th Open European Summer School and IFIP TC6.6 Workshop (EUNICE
’09), pages 208–216, 2009.

[139] Sprint.net. http://www.sprint.net, Sept. 2010.
[140] M. Stoecklin, J.-Y. L. Boudec, and A. Kind. A Two-Layered Anomaly Detection

Technique Based on Multi-modal Flow Behavior Models. In Proc. of 9th Int. Conf.
on Passive and Active Measurement (PAM ’08), pages 212–221, 2008.

[141] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan. Cost-based Modeling
for Fraud and Intrusion Detection: Results from the JAM Project. In Proc. of the
2000 DARPA Information Survivability Conference and Exposition, pages 130–144,
2000.

[142] W. Strayer, D. Lapsely, R. Walsh, and C. Livadas. Botnet detection based on net-
work behavior. In Botnet Detection: Countering the Largest Security Threat. Springer
New York, 2008.

[143] SURFnet. www.surfnet.nl, Sept. 2010.
[144] Symantec.com. The state of spam, a monthly report - june 2010.

http://www.symantec.com/, Sept. 2010.
[145] T. Taleb, Z. M. Fadlullah, K. Hashimoto, Y. Nemoto, and N. Kato. Tracing back

attacks against encrypted protocols. In Proc. of the 2007 Int. Conf. on Wireless com-
munications and mobile computing (IWCMC ’07), pages 121–126, 2007.

[146] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of the
KDD CUP 99 data set. In Proc. of the 2nd IEEE Int. Conf. on Computational intelli-
gence for security and defense applications (CISDA ’09), pages 53–58, 2009.

[147] The Cooperative Association for Internet Data Analysis. CAIDA DATA.
http://www.caida.org/data, Sept. 2010.

[148] B. Trammell and E. Boschi. Bidirectional Flow Export Using IP Flow Information
Export (IPFIX). RFC 5103 (Proposed Standard), 2008.

[149] D. F. van Vliet. Turnover Poseidon: Incremental Learning in Clustering Methods
for Anomaly based Intrusion Detection. In Proc. of the 4th Twente Student Confer-
ence on IT, 2006.

[150] W. van Wanrooij and A. Pras. Filtering Spam from Bad Neighborhoods. Interna-
tional Journal of Network Management (accepted for publication), 2010.

[151] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis.
Gnort: High Performance Network Intrusion Detection Using Graphics Proces-
sors. In Proc. of the 11th Int. Symp. on Recent Advances in Intrusion Detection (RAID
’08), pages 116–134, 2008.



BIBLIOGRAPHY 173

[152] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 1967.

[153] G. Vliek. Detecting spam at the network level. Master’s thesis, Master Thesis in
Computer Science, University of Twente, Feb. 2009.

[154] A. Wagner and B. Plattner. Entropy based worm and anomaly detection in fast ip
networks. In 14th IEEE Int. Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprise (WETICE ’05), pages 172–177, June 2005.

[155] H. Wang, Y. Lin, Y. Jin, and S. Cheng. Easily-Implemented Adaptive Packet Sam-
pling for High Speed Networks Flow Measurement. In Proc. of 6th Int. Conf. on
Computational Science (ICCS’06), pages 128–135, 2006.

[156] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy of computer
worms. In Proc. of 2003 ACM workshop on Rapid malcode (WORM’03), pages 11–18,
2003.

[157] C. V. Wright, F. Monrose, and G. M. Masson. HMM Profiles for Network Traffic
Classification. In Proc. of the Workshop on Visualization and Data Mining for Com-
puter Security (VizSEC/DMSEC ’04), pages 9–15, 2004.

[158] S. Zanero. Analyzing TCP traffic patterns using self organizing maps. In Proc. of
13th Int. Conf. Image Analysis and Processing (ICIAP ’05), pages 83–90, 2005.

[159] Q. Zhao, J. Xu, and A. Kumar. Detection of super sources and destinations in
high-speed networks: Algorithms, analysis and evaluation. IEEE Journal on Se-
lected Areas in Communications, 24(10):1840–1852, 2006.

[160] Z. Zhu, G. Lu, Y. Chen, Z. Fu, P. Roberts, and K. Han. Botnet research survey. In
32nd Annual IEEE Int. Computer Software and Applications (COMPSAC ’08), pages
967–972, 2008.

[161] C. Zou, W. Gong, and D. Towsley. Code red worm propagation modeling and
analysis. In Proc. of 17th USENIX Security Symposium (USENIX Security ’08), pages
138–147, 2002.

[162] T. Zseby, T. Hirsch, and B. Claise. Packet sampling for flow accounting: Chal-
lenges and limitations. In Proc. of 9th Int. Conf. on Passive and Active Measurement
(PAM ’08), pages 61–71, 2008.



174 BIBLIOGRAPHY



List of Acronyms

FN False negative rate.
FP False positive rate.
TN True negative rate.
TP True positive rate.

ACI Autonomic Computing Initiative.

DNS Domain Name System.
DoS Denial of Service.
DTMC Discrete Time Markov Chain.

HMM Hidden Markov Model.

ICMP Internet Control Message Protocol.
IDS Intrusion Detection System.
IETF Internet Engineering Task Force.
IPFIX IP Flow Information eXport.
IRC Internet Relay Chat.
ITU International Telecommunication Union.

MRTG Multi Router Traffic Grapher.

NfSen Netflow Sensor.

PSAMP Packet Sampling.

ROC Receiver Operating Characteristics.

SSH Secure Shell Protocol.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.
UT University of Twente.



176 List of Acronyms



Index

Adaptability, 107, 131
Alert, 69

Botnets, 33

Cisco Netflow, 15
version 5, 16
version 9, 16

Classification, 112, 138
actual classes, 112
prediction classes, 112

Correlation procedure, 70

Data collection, 40, 62
Denial of Service (DoS) attack, 25

Géant, 15, 42
Gaussian fits, 120, 123
Ground truth, 57, 79, 102

importance of -, 60

Hidden Markov Models, 79, 149
SSH attack model, 86
SSH normal traffic model, 88
trained models, 92

Internet2, 2, 42
Intrusion Detection, 4

Anomaly-based, 4, 19, 37, 106
Flow-based ID, 6
Misuse-based, 4, 19, 37
open issues, 7
taxonomies, 19

IPFIX, 13

Labeled Data Set

flow-based, 73
payload-based, 58
public data set, 77

Network attacks, 18
Network flows, 13

definition, 13
Network scans, 28
Network traces, 7, 58, 77

Optimization problem, 106, 116
Optimization procedure, 116

Performance measures, 113, 126
confusion matrix, 114, 126
detection lag, 115, 130
detection rate, 114, 130
normalization lag, 115, 130

Sampling, 17
Simpleweb, 7, 58, 77
SPAM, 2, 19, 33
SSH dictionary attack, 46, 81, 86, 108

attack phases, 82, 87
SURFnet, 9, 15, 145

Time series, 40, 79, 81, 106
DNS, 50
generation, 92
SSH, 45, 84

Tuning, 105

University of Twente, 9, 15, 36, 41, 91, 111,
145, 146

Worms, 30



178 About the author



About the author

Anna Sperotto was born in Belluno, Italy, on November 3rd, 1982. She studied Com-
puter Science at the Ca’ Foscari University, Venice, Italy, where she graduated in 2004
(Bachelor of Science) and in 2006 (Master of Science), both cum laude. Close to the con-
clusion of her studies, she spent 5 months in Manchester, UK, as part of the Erasmus
program. In 2006, she enrolled as a PhD candidate in the Design and Analysis of Com-
munication Systems (DACS) group at the University of Twente. There she conducted
her research under the umbrella of the Centre for Telematics and Information Technol-
ogy (CTIT), as part of the Next Generation Protection and Security of Content (PROS-
ECCO) Project, and the European Network of Excellence on Management Solutions for
Next Generation Networks (EMANICS). Her main topics of interest are Intrusion De-
tection, Self-Learning and Graph Theory.

A list of her publications in reverse chronological order:

• Sperotto, A. and Schaffrath, G. and Sadre, R. and Morariu, C. and Pras, A. and
Stiller, B.An Overview of IP Flow-based Intrusion Detection IEEE Communications
Surveys & Tutorials, 12 (3). pp. 343-356.

• Hofstede, R.J. and Sperotto, A. and Fioreze, T. and Pras, A. The Network Data
Handling War: MySQL vs. NfDump. In: 16th EUNICE/IFIP WG 6.6 Workshop on
Networked Services and Applications - Engineering, Control and Management,
20-30 June 2010, Trondheim, Norway. pp. 167-176. Lecture Notes in Computer
Science 6164. Springer Verlag.

• Fioreze, T., Granville, L., Pras, A., Sperotto, A. and Sadre, R. Self-Management of
Hybrid Networks: Can We Trust NetFlow Data? In: 11th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2009), 1-5 Jun 2009, Long
Island, New York, USA. pp. 577-584. IEEE Computer Society Press.

• Pras, A., Sadre, R., Sperotto, A., Fioreze, T., Hausheer, D. and Schoenwaelder, J.
Using NetFlow/IPFIX for Network Management. Journal of Network and Systems
Management, 17 (4).

• Sperotto, A., Sadre, R., de Boer, P.T. and Pras, A. Hidden Markov Model modeling
of SSH brute-force attacks. In: Integrated Management of Systems, Services, Pro-
cesses and People in IT, Proceedings of the 20th IFIP/IEEE International Work-
shop on Distributed Systems: Operations and Management, DSOM 2009, Octo-



180 About the author

ber 27-28, 2009, Venice, Italy. pp. 164-176. Lecture Notes in Computer Science
5841/2009. Springer Verlag.

• Sperotto, A., Sadre, R., van Vliet, D.F. and Pras, A. A Labeled Data Set For Flow-
based Intrusion Detection. In: IP Operations and Management, Proceedings of the
9th IEEE Intenational Workshop IPOM 2009, October 29-30, 2009, Venice, Italy.
pp. 39-50. Lecture Notes in Computer Science 5843/2009. Springer Verlag.

• Sperotto, A., Vliek, G., Sadre, R. and Pras, A. Detecting Spam at the Network Level.
In: Proceedings of the 15th Open European Summer School and IFIP TC6.6 Work-
shop, EUNICE 2009, 7-9 Sep 2009, Barcelona. pp. 208-216. Lecture Notes in Com-
puter Science 5733. Springer Verlag.

• Sperotto, A., Sadre, R. and Pras, A. Anomaly Characterization in Flow-Based Traffic
Time Series In: 8th IEEE International Workshop on IP Operations and Manage-
ment, IPOM 2008, 22-26 September 2008, Samos, Greece. pp. 15-27. Lecture
Notes in Computer Science 5275/2008. Springer Verlag.

• Sperotto, A. and van de Meent, R. A Survey of the High-Speed Self-Learning Intrusion
Detection Research Area In: First International Conference on Autonomous Infras-
tructure, Management and Security, 21-22 Jun 2007, Oslo, Norway. pp. 196-199.
Lecture Notes in Computer Science 4543. Springer Verlag.

• Sperotto, A. and Pelillo, M. Szemeredi’s Regularity Lemma and Its Applications to
Pairwise Clustering and Segmentation In: Energy Minimization Methods in Com-
puter Vision and Pattern Recognition Energy Minimization Methods in Com-
puter Vision and Pattern Recognition, 6th International Conference, EMMCVPR
2007, 27-29 Aug 2007, EZhou, Hubei, China. pp. 13-27. Lecture Notes in Com-
puter Science 4679. Springer Verlag.



Acknowledgments

A colleague once asked me why I find it nice to hike in the mountains. Well, you might
be under the sun, going uphill, with a rucksack on your shoulders, heavy shoes and
sore legs, but when you get there, in a refuge enclosed by the Dolomites, the view is
breathtaking and highly rewarding.

I believe that taking a PhD moves along the same lines: four years ago I chose a
path and I’ve steadily progressed till where I’m standing now.

However, as for in the mountains, where you must never go alone so that there is
always a companion to push you forward when things get hard, so in this PhD there
have been many persons to walk with me.

In my first week of work, Tiago told me: “Aiko is not just your supervisor, he’s your
mentor”. I kept this in mind during these years, and I think it is really true. Aiko, I
want to thank you for the care you put in guiding me and in preparing me not just for
the scientific aspects of this job, but also for all the rest. If I have to choose something to
take along with me, it would be your question: “What did you learn?”. This may seem
easy to answer, but experience taught me that, often, it is not. Thus when you do find
the answer you really gained some insight. And this works, not just for science.

Many thanks also to Boudewijn, especially in the final phase of the work. I wit-
nessed an amazing team-work of you and Aiko to make all this happen.

Ramin, I think you deserve at least as many thanks as the number of times I walked
into your office, and we both know these have been many. You have taken part in
all the phases of my PhD, the more as well as the less enjoyable ones, and you have
supported my work also when things where so fuzzy that I was not really sure if I was
solving a problem or making one. My general feeling is that many crucial steps-forward
happened when I was perched on the cabinet in your office. :)

I’m convinced research is a team-work: what I do not know, somebody else proba-
bly knows. This explain why I’m often on the search for collaborations. I want there-
fore to thank all the people I’ve collaborated with in these years. Among them, special
thanks go to Pieter-Tjerk, who showed me how to look at a problem from all the differ-
ent angles, and to Michel, who really took the time to familiarize with my research and
to come up with new, inspiring, research directions.

I could not have done this work, not to say, gone through the dark dutch winters, if
I would not have been surrounded by a group of great colleagues to keep my mood up.
Many of them are my friends also outside the office, but my first thanks go to Marijn,



182 About the author

Desi and Yimeng, who shared the office with me for four years. Despite the fact that
we have probably been the most chatty room at DACS, we are now all dealing with our
theses, and more: we are on the move. It has been great to spend my time with you and
see all of you moving forward to various stages of your lives. I truly think that one of
our best ideas was to rearrange the office so that we could face each other, and I believe
we will be in touch for much longer than our studies.

Many thanks also to Giovane, Rafael, Idilio (“Hey Apples!”), Anja, Tiago, Laura,
Luiz Olavo, Edu, Anne, Stephan, Martijn and all the other persons that occasionally join
our lively after-lunch coffees; and to Ivan, Fei, Damiano, Emmanuele, Stefano, Lilya,
Vanessa, Frank, Rick, Lianne, Andreas, Jelena, David and to all the other nice persons I
met in these years. A big thank certainly goes to Andrea, that after keeping me company
in Skype for years, finally decided to come to the Netherlands (good move! ;-). Thanks
again to Marijn and Karen, who accepted to be my paranymphs.

Un grazie speciale, che va ben oltre quello che posso scrivere qui, va alla mia famiglia:
Mamma, Papà, Gabriella, Francesca e Nonna, per cominciare. A voi è capitato il com-
pito più difficile, che è stato quello di lasciarmi andare. E anche se un po’ qui mi pren-
dono in giro perchè parlo ancora tutti i giorni in Skype con Papà e al telefono con tutti
gli altri, non cambierei questa abitudine per nulla al mondo. Anche se sono un po’ orso
e non ve lo faccio sempre capire, ricordatevi che vi voglio bene e mi mancate più di
quanto posso dire. Non avrei potuto volare cosı́ lontano se non sapessi che ho sempre
un nido a cui tornare. E poi grazie a tutti gli altri: Pieranna, Andrea, Veronica, Gabriele,
Maria e la nostra mascotte Chiara, Sara, Fabio, Elena, Marco, Riccardo, Silvia, zia Luisa
e zio Vittorio e zia Anna Maria.

En hier, heel veel dank aan Chris, Ronnie, Maarten, Gusta, Niels, Joris, Tessa en
Bart: jullie hebben mij met open armen ontvangen, met veel liefde en gezelligheid.

And finally, Wouter. For you, thanks for all. You stand by me since I met you, you
know all the ups-and-downs that there have been over these years of research: you
always put me back on my feet and encouraged me to go on. But life is not just work
and I can only say that I’m so proud of what we are building together.


